rnn_op.cc 7.8 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

18
#include "paddle/fluid/framework/infershape_utils.h"
G
Guo Sheng 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
G
Guo Sheng 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

namespace paddle {
namespace operators {

class RNNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
  }
};

class RNNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
        "input_size and the hidden_size in the next may not be same");
    AddInput("PreState",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)")
        .AsDuplicable();
    AddInput("WeightList",
             "(vector<Tensor>), stores weight and bias data when the weight "
             "use the list format. ")
        .AsDuplicable();
    AddInput("SequenceLength",
             "(Tensor) When the input data is padding, "
             "set this parameter. This parameter represents "
             "the variable sequence lengths in a batch. "
             "The size of the vector has to equal the batch_size.")
        .AsDispensable();
    AddOutput("DropoutState",
              "Store the global drop state when training, needed by cudnn rnn.")
        .AsDispensable();
    // maybe need add intermediate outputs for cpu kernel
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
    AddOutput("State",
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)")
        .AsDuplicable();
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between rnn layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec", "whether it is bidirectional rnn")
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of rnn").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number").SetDefault(1);
    AddAttr<std::string>(
        "mode",
        "(string) rnn types, including: LSTM, GRU, RNN_RELU, RNN_TANH.");
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
    AddComment(R"DOC(
)DOC");
  }
};

class RNNGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "RNN");
    OP_INOUT_CHECK(ctx->HasInputs("PreState"), "Input", "PreState", "RNN");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "RNN");
    // OP_INOUT_CHECK(ctx->HasInputs("State"), "Input", "State", "RNN");

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
    if (ctx->HasOutputs(framework::GradVarName("WeightList"))) {
      ctx->SetOutputsDim(framework::GradVarName("WeightList"),
                         ctx->GetInputsDim("WeightList"));
    }
    if (ctx->HasOutputs(framework::GradVarName("PreState"))) {
      ctx->SetOutputsDim(framework::GradVarName("PreState"),
                         ctx->GetInputsDim("PreState"));
    }
  }
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class RNNGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rnn_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("PreState", this->Input("PreState"));
    op->SetInput("WeightList", this->Input("WeightList"));
    if (this->HasInput("SequenceLength")) {
      op->SetInput("SequenceLength", this->Input("SequenceLength"));
    }
    op->SetInput("DropoutState", this->Output("DropoutState"));
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput(framework::GradVarName("State"), this->OutputGrad("State"));

    op->SetOutput(framework::GradVarName("WeightList"),
                  this->InputGrad("WeightList", false));

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("PreState"),
                  this->InputGrad("PreState", false));
    op->SetAttrMap(this->Attrs());
  }
};

template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_THROW(platform::errors::Unimplemented(
        "CPU is not support for this kernel now. Will be add in the future"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
189 190
DECLARE_INFER_SHAPE_FUNCTOR(rnn,
                            RnnInferShapeFunctor,
191 192
                            PD_INFER_META(phi::RnnInferMeta));

193 194 195
REGISTER_OPERATOR(rnn,
                  ops::RNNOp,
                  ops::RNNOpMaker,
G
Guo Sheng 已提交
196
                  ops::RNNGradOpMaker<paddle::framework::OpDesc>,
197 198
                  ops::RNNGradOpMaker<paddle::imperative::OpBase>,
                  RnnInferShapeFunctor);
G
Guo Sheng 已提交
199
REGISTER_OPERATOR(rnn_grad, ops::RNNGradOp);