multi_devices_graph_builder.cc 17.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16 17
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
20
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
22
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
24 25 26 27

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
28

Y
Yu Yang 已提交
29 30 31
#include <string>
#include <vector>

Y
Yancey1989 已提交
32 33 34 35
DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot",
              "the ssa graph path only print with GLOG_v=10,"
              "default /tmp/graph.dot");

Y
Yu Yang 已提交
36 37 38
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
39 40

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
41 42 43 44
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
45
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
46
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
47 48 49
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
50
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
51
      strategy_(strategy) {
Y
Yu Yang 已提交
52 53 54 55 56
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
57
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
58 59
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
60
      local_scopes_(local_scopes),
Y
yuyang18 已提交
61
      strategy_(strategy) {
Y
Yu Yang 已提交
62
#endif
Y
Yu Yang 已提交
63 64 65 66 67
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
68 69
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
70 71
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
72
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
73 74
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
75

Y
Yu Yang 已提交
76 77 78
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
79 80 81
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
82 83
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
84 85
  }
}
Y
fix pe  
Yancey1989 已提交
86 87 88 89

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
90 91
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
92
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
93 94 95
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
109 110 111
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
125 126 127
    return false;
  }

Y
Yu Yang 已提交
128 129 130 131
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
132
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
133
    for (auto &var : opvars) {
Y
Yancey1989 已提交
134 135 136
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
137
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
138
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
139
        return true;
T
typhoonzero 已提交
140 141
      }
    }
Y
Yu Yang 已提交
142
    return false;
T
typhoonzero 已提交
143 144
  };

Y
Yancey1989 已提交
145 146
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
147 148
}

Y
Yu Yang 已提交
149 150
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
151 152 153 154
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
155

Y
Yu Yang 已提交
156
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
157
  SSAGraph &result = *graph;
C
chengduoZH 已提交
158
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
159 160 161 162 163

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
164

Y
fix pe  
Yancey1989 已提交
165 166 167 168
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
169

C
chengduoZH 已提交
170 171 172 173 174 175
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
176 177
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
178 179 180
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
181
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
182
      // always use the first device
Y
Yancey1989 已提交
183
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
184
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
185
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
186
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
187
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
188 189
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
190 191
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
192
      is_forwarding = false;
Y
Yu Yang 已提交
193
    } else {
C
chengduoZH 已提交
194 195 196 197 198 199 200 201 202
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
203
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
204
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
205
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
206 207 208
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
209 210 211 212 213 214 215
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
216
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
217 218
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
219 220
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  cur_device_id = (cur_device_id + 1) % places_.size();
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(var_types, g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
237
            }
Y
yuyang18 已提交
238
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
239 240 241 242 243 244
          }
        }
      }
    }
  }

C
chengduoZH 已提交
245 246 247 248 249 250 251
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
252 253 254 255 256
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
257

Y
Yu Yang 已提交
258 259 260 261 262
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
263
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
264
    std::ofstream fout(FLAGS_ssa_graph_path);
Y
Yancey1989 已提交
265
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
266 267
  }

Y
Yu Yang 已提交
268
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
269 270
}

C
fix ci  
chengduoZH 已提交
271 272 273 274 275 276 277 278
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
279 280
}

C
chengduoZH 已提交
281 282
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
283
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
284 285 286 287 288 289 290
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
291
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
292 293 294
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
295
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
315 316 317 318 319 320 321 322 323 324
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
325 326
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
350 351 352
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
353
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
397 398 399
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
400 401 402
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
403
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
404 405 406
  }
}

C
chengduoZH 已提交
407 408 409
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
437 438
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
439
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
440
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
441 442 443
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
444
      op->AddInput(dep_var);
Y
Yancey1989 已提交
445 446 447 448
    }
  }
}

Y
Yancey1989 已提交
449 450 451 452 453 454 455 456
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
457 458
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
459 460
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
461
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
462

Y
Yancey1989 已提交
463
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
464
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
465
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
466
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
467
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
468
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
469
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
470 471 472
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
473
        "rpc op should be in ["
Y
Yancey1989 已提交
474 475 476
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
477 478
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
Y
Yu Yang 已提交
479
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
480 481 482
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
483 484
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
485 486 487
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
488
}
Y
Yu Yang 已提交
489 490 491
}  // namespace details
}  // namespace framework
}  // namespace paddle