activation_grad_kernel.cc 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/activation_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/activation_grad_impl.h"

namespace phi {

Y
YuanRisheng 已提交
24
#define DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \
25 26 27 28 29
  template <typename T, typename Context>                           \
  void name##GradKernel(const Context& dev_ctx,                     \
                        const DenseTensor& x,                       \
                        const DenseTensor& dout,                    \
                        DenseTensor* dx) {                          \
Y
YuanRisheng 已提交
30 31
    funcs::functor_class<T> functor;                                \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>(        \
32 33 34
        dev_ctx, &x, nullptr, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(      \
    name, functor_class, attr)                               \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& x,                \
                        const DenseTensor& dout,             \
                        float attr,                          \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr;                               \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);           \
48 49
  }

Y
YuanRisheng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(      \
    name, functor_class, attr1, attr2)                       \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& x,                \
                        const DenseTensor& dout,             \
                        float attr1,                         \
                        float attr2,                         \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr1;                              \
    *(attrs[1].second) = attr2;                              \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);           \
65 66
  }

Y
YuanRisheng 已提交
67
#define DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \
68 69 70 71 72
  template <typename T, typename Context>                             \
  void name##GradKernel(const Context& dev_ctx,                       \
                        const DenseTensor& out,                       \
                        const DenseTensor& dout,                      \
                        DenseTensor* dx) {                            \
Y
YuanRisheng 已提交
73 74
    funcs::functor_class<T> functor;                                  \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>(          \
75 76 77
        dev_ctx, nullptr, &out, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(    \
    name, functor_class, attr)                               \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& out,              \
                        const DenseTensor& dout,             \
                        float attr,                          \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr;                               \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);         \
91 92
  }

Y
YuanRisheng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(    \
    name, functor_class, attr1, attr2)                       \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& out,              \
                        const DenseTensor& dout,             \
                        float attr1,                         \
                        float attr2,                         \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr1;                              \
    *(attrs[1].second) = attr2;                              \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);         \
  }

Y
YuanRisheng 已提交
110 111 112 113 114 115 116 117 118
#define DEFINE_CPU_ACTIVATION_GRAD_KERNEL_NODEP(name, functor_class)      \
  template <typename T, typename Context>                                 \
  void name##GradKernel(                                                  \
      const Context& dev_ctx, const DenseTensor& dout, DenseTensor* dx) { \
    funcs::functor_class<T> functor;                                      \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>(              \
        dev_ctx, nullptr, nullptr, &dout, dx, functor);                   \
  }

Y
YuanRisheng 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Cos, CosGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Tan, TanGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Acos, AcosGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Sin, SinGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Asin, AsinGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Atan, AtanGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Sinh, SinhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Cosh, CoshGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Asinh, AsinhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Acosh, AcoshGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, AtanhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink, TanhShrinkGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Silu, SiluGradFunctor);
132 133 134 135 136 137 138
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Square, SquareGradFunctor);

DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Exp, ExpGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Expm1, Expm1GradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Reciprocal, ReciprocalGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt, SqrtGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Rsqrt, RsqrtGradFunctor);
Y
YuanRisheng 已提交
139
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(LogSigmoid, LogSigmoidGradFunctor);
140 141 142 143
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Log, LogGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Log2, Log2GradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Log10, Log10GradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Log1p, Log1pGradFunctor);
Y
YuanRisheng 已提交
144 145 146

DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, ReluGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, TanhGradFunctor);
Y
YuanRisheng 已提交
147
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid, SigmoidGradFunctor);
Y
YuanRisheng 已提交
148

Y
YuanRisheng 已提交
149 150 151 152
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_NODEP(Round, ZeroGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_NODEP(Floor, ZeroGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_NODEP(Ceil, ZeroGradFunctor);

Y
YuanRisheng 已提交
153 154
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu,
                                               LeakyReluGradFunctor,
155
                                               alpha);
Y
YuanRisheng 已提交
156 157 158 159 160 161 162 163 164
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu,
                                               ThresholdedReluGradFunctor,
                                               threshold);
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink,
                                               SoftShrinkGradFunctor,
                                               lambda);
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink,
                                               HardShrinkGradFunctor,
                                               threshold);
Y
YuanRisheng 已提交
165
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Swish, SwishGradFunctor, beta);
Y
YuanRisheng 已提交
166

167 168 169 170
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Mish,
                                               MishGradFunctor,
                                               threshold);

Y
YuanRisheng 已提交
171 172
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu,
                                               BReluGradFunctor,
173 174
                                               t_min,
                                               t_max);
175

176 177 178 179 180 181 182 183 184
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(STanh,
                                               STanhGradFunctor,
                                               scale_a,
                                               scale_b);

DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(Softplus,
                                               SoftplusGradFunctor,
                                               beta,
                                               threshold);
Y
YuanRisheng 已提交
185 186 187 188 189
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid,
                                                 HardSigmoidGradFunctor,
                                                 slope,
                                                 offset);

Y
YuanRisheng 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
template <typename T, typename Context>
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx) {
  dev_ctx.template Alloc<T>(dx);

  auto x_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(&x, "Input", "X", "elu_grad"));
  auto out_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&out, "Input", "Out", "elu_grad"));
  auto dout_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&dout, "Input", "dOut", "elu_grad"));
  auto dx_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(dx, "Output", "dX", "elu_grad"));
  auto* place = dev_ctx.eigen_device();

  if (alpha > 0) {
    funcs::ELUGradFunctor<T> functor;
    functor.alpha = alpha;
    functor(*place, x_flatten, out_flatten, dout_flatten, dx_flatten);
  } else {
    funcs::ELUGradNegativeAlphaFunctor<T> functor;
    functor.alpha = alpha;
    functor(*place, x_flatten, out_flatten, dout_flatten, dx_flatten);
  }
}

Y
YuanRisheng 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         float threshold,
                         float scale,
                         float offset,
                         DenseTensor* dx) {
  funcs::HardSwishGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGradImpl<T, Context, funcs::HardSwishGradFunctor<T>>(
      dev_ctx, &x, nullptr, &dout, dx, functor);
}

237 238 239 240
}  // namespace phi

PD_REGISTER_KERNEL(
    relu_grad, CPU, ALL_LAYOUT, phi::ReluGradKernel, float, double) {}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

#define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name, CPU, ALL_LAYOUT, phi::func, float, double) {}

#define PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(                                         \
      name, CPU, ALL_LAYOUT, phi::func, float, double, phi::dtype::float16) {}

PD_REGISTER_ACTIVATION_GRAD_KERNEL(sin_grad, SinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cos_grad, CosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tan_grad, TanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acos_grad, AcosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asin_grad, AsinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atan_grad, AtanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sinh_grad, SinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cosh_grad, CoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asinh_grad, AsinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acosh_grad, AcoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atanh_grad, AtanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_grad, TanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(brelu_grad, BReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(thresholded_relu_grad,
                                   ThresholdedReluGradKernel)
Y
YuanRisheng 已提交
265 266 267 268 269
PD_REGISTER_ACTIVATION_GRAD_KERNEL(soft_shrink_grad, SoftShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_shrink_grad, HardShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_shrink_grad, TanhShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_grad, EluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(silu_grad, SiluGradKernel)
270 271 272 273 274 275
PD_REGISTER_ACTIVATION_GRAD_KERNEL(mish_grad, MishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(stanh_grad, STanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(reciprocal_grad, ReciprocalGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sqrt_grad, SqrtGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(rsqrt_grad, RsqrtGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(softplus_grad, SoftplusGradKernel)
276 277 278 279 280 281 282

PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(relu_double_grad,
                                          ReluDoubleGradKernel)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(tanh_double_grad,
                                          TanhDoubleGradKernel)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(leaky_relu_double_grad,
                                          LeakyReluDoubleGradKernel)
Y
YuanRisheng 已提交
283
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(elu_double_grad, EluDoubleGradKernel)
284 285

PD_REGISTER_KERNEL(tanh_triple_grad,
286 287
                   CPU,
                   ALL_LAYOUT,
288
                   phi::TanhTripleGradKernel,
289 290 291
                   float,
                   double,
                   phi::dtype::float16) {}
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

PD_REGISTER_KERNEL(exp_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ExpGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(expm1_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::Expm1GradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(
    logit_grad, CPU, ALL_LAYOUT, phi::LogitGradKernel, float, double) {}
PD_REGISTER_KERNEL(square_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::SquareGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
Y
YuanRisheng 已提交
320 321 322 323 324
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_grad, SigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_double_grad, SigmoidDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_triple_grad, SigmoidTripleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_sigmoid_grad, HardSigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(logsigmoid_grad, LogSigmoidGradKernel)
325 326 327 328 329
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log_grad, LogGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log2_grad, Log2GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log10_grad, Log10GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log1p_grad, Log1pGradKernel)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(log_double_grad, LogDoubleGradKernel)
Y
YuanRisheng 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_swish_grad, HardSwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(swish_grad, SwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(round_grad, RoundGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(floor_grad, FloorGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(ceil_grad, CeilGradKernel)

PD_REGISTER_KERNEL(pow_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::PowGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}