quantization_pass.py 83.4 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
63
    "layer_norm",
64 65 66 67 68 69 70
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
71
    "slice",
72 73
    "hard_swish",
    "hard_sigmoid",
74
    "conv2d_transpose",
75 76 77 78
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
79 80 81 82 83
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
    "reshape",
C
ceci3 已提交
84
    "layer_norm",
85 86
]

87 88 89
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
90
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
91
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
92
    "mul": [["X", "Y"], ["Out"]],
93
    "matmul": [["X", "Y"], ["Out"]],
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
110
    "transpose2": [["X"], ["Out"]],
111 112 113 114 115 116 117 118 119
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
120
    "prelu": [["X"], ["Out"]],
121 122
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
123 124
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
125
    "layer_norm": [["X"], ["Y"]],
126
    "sigmoid": [["X"], ["Out"]],
127 128
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
129 130
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
131
    "gru": [["Input", "Weight"], ["Hidden"]],
132
    "lstm": [["Input", "Weight"], ["Hidden"]],
133 134 135
    "pad2d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
C
cc 已提交
136
    "unsqueeze2": [["X"], ["Out"]],
X
XGZhang 已提交
137
    "flatten_contiguous_range": [['X'], ["Out", "XShape"]],
138 139
}

140 141 142 143
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
144

145
def _get_op_input_var_names(op):
146 147 148 149 150 151 152
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
153 154 155 156 157
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
158 159 160
    if op_name not in _op_real_in_out_name:
        return []

161 162 163 164 165 166 167 168 169 170
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


171 172 173 174 175 176
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
177 178 179
    if op_name not in _op_real_in_out_name:
        return None

180 181 182 183 184 185 186 187 188
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


189 190 191 192 193 194 195
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
196 197 198
    if op_name not in _op_real_in_out_name:
        return []

199 200 201 202 203 204 205 206 207 208
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


209 210 211 212 213 214
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
215 216 217
    if op_name not in _op_real_in_out_name:
        return None

218 219 220 221 222 223 224 225 226 227
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


228 229 230 231
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
232
        'The scope cannot be set None.'
233
    assert place is not None, \
234
        'The place cannot be set None.'
235 236 237 238
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


239 240 241 242 243
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
244 245 246 247
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
248 249 250
    return is_input_all_not_persistable


251 252 253 254 255 256 257 258 259 260 261 262 263 264
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


265
class QuantizationTransformPass(object):
266
    """
267 268
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
269
    """
270
    _supported_quantizable_op_type = [
271
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
272
    ]
273

W
WangZhen 已提交
274
    def __init__(self,
275
                 scope=None,
276
                 place=None,
W
WangZhen 已提交
277 278 279 280
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
281
                 window_size=10000,
282
                 moving_rate=0.9,
283
                 skip_pattern=['skip_quant'],
284 285 286 287 288 289 290
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
291
        r"""
292
        Constructor.
293

W
WangZhen 已提交
294
        Args:
295
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
296 297
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
298 299 300
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
301
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
302
                the bias is not quantized.
303 304
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
305 306 307 308 309
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
310
            weight_quantize_type(str): quantization type for weights,
311 312 313
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
314 315
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
316
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
317
                will be presented in the name scope of an op. When the skip pattern is
318
                detected in an op's name scope, the corresponding op will not be quantized. 
319
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
320 321
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
349 350
                Default is None.

351

W
WangZhen 已提交
352 353
        Examples:
        .. code-block:: python
354 355 356 357
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
358
            from paddle.fluid.contrib.slim.graph import IrGraph
359 360
            from paddle.fluid import core

361
            graph = IrGraph(core.Graph(program.desc), for_test=False)
362
            place = fluid.CPUPlace()
363
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
364
            place)
365
            transform_pass.apply(graph)
W
WangZhen 已提交
366
        """
367
        self._scope = scope
368
        self._place = _get_paddle_place(place)
369 370
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
371
        self._skip_pattern = skip_pattern
372 373 374 375 376 377
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
378 379 380 381
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
382 383
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
384 385
        if activation_quantize_type not in quant_type:
            raise ValueError(
386 387 388
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
389 390
        if weight_quantize_type not in quant_type:
            raise ValueError(
391
                "Unknown weight_quantize_type: '%s'. It can only be "
392 393
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
394

395 396 397
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
398
        self._moving_rate = moving_rate
W
WangZhen 已提交
399

400 401
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
402
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
403
                op + " is not supported for quantization."
404 405
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
406
        ]
407 408
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
409

410 411 412
        self.create_var_map = {}
        self.create_op_map = {}

413
    def apply(self, graph):
414 415 416 417 418 419 420
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
421 422
        Returns:
            None
423
        """
W
WangZhen 已提交
424
        assert isinstance(graph,
425 426
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
427 428
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
429
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
430
        processed_vars = []
W
WangZhen 已提交
431

432
        def _quant_preprocess(op_node):
433 434 435
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
436 437
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
438 439
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
440 441
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
442

443
            if user_skipped:
444
                op_node.op()._set_attr("skip_quant", True)
445
                op_node.op()._set_attr("with_quant_attr", True)
446

W
WangZhen 已提交
447
        def _transform_forward(graph, op):
448
            op.op()._set_attr("quantization_type", "qat_with_weight")
449
            op.op()._set_attr("with_quant_attr", True)
450 451
            inputs = op.inputs
            for var_node in inputs:
452 453
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
454 455 456
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
457 458 459
                    name = var_node.name()
                    if name in processed_vars:
                        continue
460 461
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
491
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
492
                        else self._activation_bits
493 494
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
495 496 497 498 499 500 501 502
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
503 504
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
505
                            graph, var_node, name, quant_bits, quant_type)
506 507
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
508
                    dequantized_vars[name] = dequant_var_node
509
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
510 511 512

        def _transform_backward(graph, op):
            for var_node in op.inputs:
513 514
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
515 516
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
517
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
518

519
        if not self._is_test:
W
WangZhen 已提交
520
            self._create_global_step(graph)
521
        ops = graph.all_op_nodes()
522 523 524 525 526 527
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
528 529
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
530 531
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
532
        for op in ops:
533
            if op.name() in self._quantizable_ops:
534
                if not self._is_skip_quant(graph, op):
535
                    _transform_forward(graph, op)
W
WangZhen 已提交
536 537
        # The loop for renaming the inputs of backward op.
        for op in ops:
538
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
539
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
540
        graph.resolve_hazard()
541
        return graph
W
WangZhen 已提交
542

W
WangZhen 已提交
543
    def _create_global_step(self, graph):
544 545
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
546
            counter_name = cpt.to_text('@STEP_COUNTER@')
547
            for node in graph.all_var_nodes():
W
WangZhen 已提交
548
                if node.name() == counter_name:
549 550
                    self._global_step = node
            if self._global_step is None:
551
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
552 553 554 555
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
556 557 558 559 560 561
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
562 563
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
564
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
565 566
                increment_op = graph.create_op_node(
                    op_type='increment',
567 568 569 570 571
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
572 573
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
574 575 576
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
577

578
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
579 580 581 582
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
583 584
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
585
        elif quant_type == 'range_abs_max':
586
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
587
                                                       quant_bits)
588
        elif quant_type == 'moving_average_abs_max':
589 590
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
591

592
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
593 594 595 596 597 598
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
599
            name=self._quantized_var_name(name),
600 601 602
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
603
        scale_var_node = graph.create_persistable_node(
604
            name=self._quantized_scale_name(name),
605
            var_type=var_node.type(),
606
            shape=[1],
607
            var_dtype=var_node.dtype())
608 609 610 611 612 613 614 615
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
616 617
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
618 619 620 621
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
622 623 624
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
625 626 627
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
628 629
        return quant_var_node, scale_var_node

630
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
631 632 633 634 635 636
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
637
            name=self._quantized_var_name(name),
638 639 640
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
641

642
        scale_in_node = graph.create_persistable_node(
643
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
644 645
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
646
            var_dtype=var_node.dtype())
647 648
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
649 650 651 652 653 654
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
655 656 657 658 659

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

660
        if not self._is_test:
W
WangZhen 已提交
661
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
662
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
663 664
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
665
                shape=[self._window_size],
666
                var_dtype=var_node.dtype())
667 668
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
669 670 671 672 673 674 675
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

676
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
677 678
            outputs['OutScales'] = scales_node
        attrs = {
679
            'window_size': self._window_size,
W
WangZhen 已提交
680
            'bit_length': quant_bits,
681 682
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
683 684 685 686 687 688 689
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

690 691 692 693
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
694

695 696 697
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
698 699 700

        return quant_var_node, scale_out_node

701
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
702 703 704 705
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
706
            name=self._quantized_var_name(name),
707 708 709 710
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
711
            name=self._quantized_scale_name(name),
712 713 714
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
715 716
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
717 718 719 720 721 722
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
723 724 725 726 727 728 729 730 731 732

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
733 734
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
735
            _init_var_node(
736
                state_in_node,
737 738 739 740
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
741 742 743 744 745
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
746 747 748 749 750 751
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

788 789
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
790 791 792 793 794 795
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
796
            name=self._quantized_var_name(name),
797 798 799
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
800
        scale_var_node = graph.create_persistable_node(
801
            name=self._quantized_scale_name(name),
802
            var_type=var_node.type(),
803
            shape=[var_node.shape()[quant_axis]],
804
            var_dtype=var_node.dtype())
805 806 807 808 809 810 811 812
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
813 814 815 816
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
817
                'quant_axis': quant_axis,
818
                'is_test': self._is_test,
819 820 821 822 823 824 825 826 827 828
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
829 830 831 832 833 834 835 836
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
837 838 839
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
840 841 842
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
843 844 845 846
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
847 848 849
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
850 851 852
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
853 854
        return dequant_var_node

855
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
856
                                   quant_bits, quant_axis):
857 858 859 860 861 862 863 864 865 866 867 868 869 870
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
871
                'quant_axis': quant_axis,
872 873 874 875 876 877 878 879 880 881 882
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
968
                graph.out_node_mapping_table[out_node.name] = var_node.name()
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1072
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1073 1074
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1075

1076
    def _is_skip_quant(self, graph, op_node):
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1089 1090 1091
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1092 1093
        return is_skip

W
WangZhen 已提交
1094 1095 1096 1097 1098

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1099
                 bias_correction=False,
W
WangZhen 已提交
1100 1101
                 weight_bits=8,
                 activation_bits=8,
1102
                 weight_quantize_type='abs_max',
1103
                 quantizable_op_type=None):
1104 1105
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1106
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1107
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1108 1109
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1110 1111 1112

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1113 1114
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1115 1116
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1117 1118 1119 1120 1121
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1122 1123
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1124
        """
W
WangZhen 已提交
1125 1126 1127 1128 1129
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1130
        self._bias_correction = bias_correction
1131
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1132 1133 1134
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1135 1136
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1137 1138
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1139
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1140 1141

    def apply(self, graph):
1142 1143 1144 1145 1146
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1147 1148
        Returns:
            None
1149
        """
1150
        # Get input scales in fake quant op and process weights
1151 1152
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1153 1154 1155
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1156
                input_arg_name = op_node.input('X')[0]
1157 1158 1159 1160
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1173
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1174
                        scale_v = scale_v[0]
W
WangZhen 已提交
1175
                    else:
1176
                        scale_v = scale_v.tolist()
1177
                    self._quant_var_scale_map[input_arg_name] = scale_v
1178
                    # Quantize weight and restore
W
WangZhen 已提交
1179
                    param_v = self._load_var(input_arg_name)
1180 1181 1182 1183 1184 1185 1186
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1187 1188 1189 1190
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1191
                    self._restore_var(input_arg_name, quantized_param_v)
1192
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1193

1194
        # Remove all fake dequant op
1195
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1196 1197 1198 1199 1200
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1201
        # Insert post dequant op
1202
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1203
        for op_node in ops:
1204 1205 1206
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1207
                if self._weight_quantize_type == 'channel_wise_abs_max':
1208 1209
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1210 1211
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1212

1213
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1214 1215
        for op_node in ops:
            for var_node in op_node.inputs:
1216 1217 1218
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1219 1220 1221 1222
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1223
        graph.resolve_hazard()
1224
        return graph
W
WangZhen 已提交
1225 1226

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1227 1228
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1229 1230
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1231
        else:
1232 1233
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1234
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1235

1236
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1237 1238 1239
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1240 1241 1242 1243 1244
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1245 1246 1247
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1248
            scale_v = self._quant_var_scale_map[original_var_name]
1249 1250 1251 1252 1253 1254 1255 1256
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1257
                scale_var_node = self._quant_var_scale_map[original_var_name]
1258

1259
        if len(op_node.output_arg_names()) != 1:
1260 1261 1262
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1263 1264
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1265 1266 1267 1268 1269
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1270 1271
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1272 1273 1274
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1275 1276 1277 1278 1279
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
1280 1281 1282 1283
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
        else:
            x_num_col_dims = 1
1284 1285 1286 1287
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1288
                'quant_axis': quant_axis,
1289 1290
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1301
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1302 1303
        return dequant_var_node

W
WangZhen 已提交
1304
    def _insert_post_dequant_op(self, graph, op_node):
1305
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1306 1307 1308
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1309
        for var_node in op_node.inputs:
W
WangZhen 已提交
1310
            name = var_node.name()
1311 1312 1313 1314 1315
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1316
                new_in.clear_outputs()
W
WangZhen 已提交
1317 1318
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1319
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1320 1321 1322 1323
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1324
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1325
                max_range *= param_range / scale_v
W
WangZhen 已提交
1326
            else:
1327
                max_range *= act_range
1328
                assert isinstance(scale_v, IrNode)
1329
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1330

1331
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1332 1333 1334
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1335 1336
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1337 1338
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1339 1340 1341
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1342 1343
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1344 1345 1346 1347
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1348 1349 1350 1351 1352 1353
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1354
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1355 1356 1357 1358 1359
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1360 1361 1362
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1363 1364 1365

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1366
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1367 1368 1369 1370 1371 1372
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1373 1374 1375 1376 1377 1378
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1402
    def _is_float(self, v):
W
WangZhen 已提交
1403 1404 1405
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1406 1407
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1408 1409 1410 1411 1412 1413 1414
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1415 1416
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1417 1418
                if s == 0.0:
                    s = 1e-8
1419
                if quant_axis == 0:
1420 1421
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1422
                else:
1423 1424
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1425
        else:
X
XGZhang 已提交
1426
            scale = 1e-8 if scale == 0.0 else scale
1427 1428 1429
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1430

X
XGZhang 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1471 1472

class ConvertToInt8Pass(object):
1473
    def __init__(self, scope, place, quantizable_op_type=None):
1474 1475 1476 1477 1478
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1479 1480 1481
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1482 1483
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1484
        """
1485 1486 1487 1488 1489
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1490
        self._place = _get_paddle_place(place)
1491 1492

    def apply(self, graph):
1493
        """
T
tianshuo78520a 已提交
1494 1495
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1496 1497 1498

        Args:
            graph(IrGraph): the applied graph.
1499 1500
        Returns:
            None
1501
        """
1502 1503
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1504 1505
        input_map = {}
        for op_node in ops:
1506 1507
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1520
        graph.resolve_hazard()
1521 1522 1523 1524
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1525
        int8_var_node = graph.create_persistable_node(
1526
            name=cpt.to_text(int8_var_node_name),
1527 1528
            var_type=var_node.type(),
            shape=var_node.shape(),
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1544
        ops = graph.all_op_nodes()
1545 1546 1547 1548 1549 1550
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1551 1552 1553 1554 1555 1556
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1557 1558 1559 1560 1561
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1562
        """
T
tianshuo78520a 已提交
1563
        This pass is used to convert the frozen graph for paddle-mobile execution.
1564
        """
1565 1566
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1567 1568

    def apply(self, graph):
1569 1570 1571 1572 1573 1574 1575
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1576 1577
        Returns:
            None
1578
        """
1579
        ops = graph.all_op_nodes()
1580 1581 1582
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1583
                op_node.set_type('quantize')
1584 1585 1586 1587 1588 1589 1590
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1591
                op_node.set_type('dequantize')
1592 1593 1594 1595 1596 1597
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1598
        graph.resolve_hazard()
1599
        return graph
1600 1601


1602
class OutScaleForTrainingPass(object):
1603 1604 1605 1606 1607 1608 1609
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1610 1611 1612
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1613 1614 1615
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1616
        self._place = _get_paddle_place(place)
1617 1618
        self._moving_rate = moving_rate
        self._is_test = None
1619
        self._teller_set = _out_scale_op_list
1620 1621 1622 1623 1624 1625 1626 1627 1628

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1629 1630
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1631
        self._is_test = graph.is_test()
1632 1633 1634 1635 1636 1637 1638
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1639 1640 1641 1642
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1643 1644 1645 1646 1647
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1648 1649 1650 1651 1652 1653 1654 1655
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1656
                ins = {'X': in_node}
1657
                outs = {'OutScale': scale_node}
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1718
class OutScaleForInferencePass(object):
1719 1720 1721 1722 1723 1724 1725 1726 1727
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1728
        self._teller_set = _out_scale_op_list
1729 1730 1731 1732 1733 1734 1735 1736 1737

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1738 1739
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1740 1741 1742
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1743 1744
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1745 1746 1747 1748 1749 1750
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1751
                    scale_name = self._scale_name(var_name)
1752 1753 1754 1755 1756 1757 1758
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1759 1760 1761 1762 1763

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1764
                        + "_threshold", float(scale_value))
1765
                    op_node.op()._set_attr("with_quant_attr", True)
1766 1767 1768 1769 1770 1771 1772 1773
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1774 1775 1776


class AddQuantDequantPass(object):
1777 1778 1779 1780
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1781 1782 1783 1784 1785
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1786
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
1787
        "leaky_relu", "tanh", "swish", "scale", "transpose", "transpose2",
1788
        "sigmoid", "pad2d", "flatten", "flatten2", "batch_norm", "layer_norm"
1789 1790
    ]

1791 1792 1793
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1794 1795 1796 1797 1798
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1799
                 skip_pattern=["skip_quant"],
1800
                 quantizable_op_type=["elementwise_add", "pool2d"],
1801
                 is_full_quantized=False):
1802
        """
1803
        Constructor.
1804 1805 1806

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1807 1808 1809
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1810 1811 1812 1813 1814 1815 1816 1817
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1818
                quantized. Default is ["elementwise_add", "pool2d"]. 
1819 1820 1821 1822
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1823 1824
        """
        self._scope = scope
1825
        self._place = _get_paddle_place(place)
1826 1827 1828
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1829
        self._skip_pattern = skip_pattern
1830 1831 1832 1833 1834 1835 1836

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1837
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1838
                    op_type + " is not supported for quantization."
1839 1840 1841 1842
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1843 1844
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1845 1846 1847

    def apply(self, graph):
        """
1848 1849
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1850

1851 1852
        Args:
            graph(IrGraph): the target graph.
1853 1854
        Returns:
            None
1855 1856 1857 1858
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1859 1860
        dequantized_vars_map = collections.OrderedDict()

1861 1862 1863
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1864
            if op_node.name() in self._quantizable_op_type:
1865
                is_skip = False
1866
                if isinstance(self._skip_pattern, list):
1867
                    is_skip = op_node.op().has_attr("op_namescope") and \
1868 1869
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1870
                    is_skip = op_node.op().has_attr("op_namescope") and \
1871
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1872 1873 1874
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1875
                    (not _is_input_all_not_persistable(graph, op_node)):
1876
                    continue
1877

1878 1879 1880
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1881
                op_node.op()._set_attr("with_quant_attr", True)
1882
                arg_names = _get_op_input_var_names(op_node)
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1893

1894 1895
        # Backward stage, update input link
        for op_node in all_op_nodes:
1896
            if op_node.name() in self._quantizable_grad_op_type:
1897 1898 1899 1900 1901 1902 1903 1904
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node