roi_align_op_xpu.cc 8.4 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/roi_align_op.h"
#include <memory>
#include <string>

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class XPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
27 28 29 30
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

D
Double_V 已提交
31 32 33 34
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
35

D
Double_V 已提交
36 37 38 39 40
    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
41

D
Double_V 已提交
42
    int rois_num = rois->dims()[0];
43

44 45 46 47 48 49 50 51 52 53
    if (rois_num == 0) return;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto xplace = BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace());
    int rois_batch_size = 0;
    int* cpu_lod = nullptr;
54
    if (ctx.HasInput("RoisNum")) {
55
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
56 57 58 59
      rois_batch_size = rois_num_t->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
60 61 62
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
63
              rois_batch_size, batch_size));
64 65 66 67 68 69 70 71

      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), xplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size);
      cpu_lod = new int[rois_batch_size + 1];
      cpu_lod[0] = 0;
      for (int i = 0; i < rois_batch_size; i++) {
        cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i];
72 73
      }
    } else {
74 75 76 77 78 79 80
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
      auto rois_lod = lod.back();
      rois_batch_size = rois_lod.size() - 1;
81 82 83
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
84 85 86
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
87
              rois_batch_size, batch_size));
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
      cpu_lod = new int[rois_batch_size + 1];
      for (int i = 0; i < rois_batch_size + 1; i++) {
        cpu_lod[i] = rois_lod[i];
      }
106
    }
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    int* roi_id_data = nullptr;
    int r = xpu_malloc(reinterpret_cast<void**>(&roi_id_data),
                       (rois_batch_size + 1) * sizeof(int));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("no enough memory in xpu"));
    memory::Copy(xplace, roi_id_data, cplace, cpu_lod,
                 (rois_batch_size + 1) * sizeof(int));
    delete[] cpu_lod;
    r = xpu::roi_align<T, int>(
        dev_ctx.x_context(), in->data<T>(),
        out->mutable_data<T>(ctx.GetPlace()), rois->data<T>(), roi_id_data,
        batch_size, channels, height, width, out->dims()[0], pooled_height,
        pooled_width, spatial_scale, sampling_ratio, true);
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The roi_align XPU OP return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
    if (dev_ctx.x_context()->xpu_stream) {
      dev_ctx.Wait();
    }
    xpu_free(roi_id_data);
  }
};

template <typename DeviceContext, typename T>
class XPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    auto cplace = platform::CPUPlace();

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto xplace = BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace());

    int rois_batch_size = 0;
    int* cpu_lod = nullptr;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), xplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size);
      cpu_lod = new int[rois_batch_size + 1];
      cpu_lod[0] = 0;
      for (int i = 0; i < rois_batch_size; i++) {
        cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i];
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      cpu_lod = new int[rois_batch_size + 1];
      for (int i = 0; i < rois_batch_size + 1; i++) {
        cpu_lod[i] = rois_lod[i];
D
Double_V 已提交
181 182
      }
    }
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    int* roi_id_data = nullptr;
    int r = xpu_malloc(reinterpret_cast<void**>(&roi_id_data),
                       (rois_batch_size + 1) * sizeof(int));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("no enough memory in xpu"));
    memory::Copy(xplace, roi_id_data, cplace, cpu_lod,
                 (rois_batch_size + 1) * sizeof(int));
    in_grad->mutable_data<T>(ctx.GetPlace());

    int output_grad_size = out_grad->numel();

    delete[] cpu_lod;
    if (output_grad_size > 0) {
      r = xpu::roi_align_grad<T, int>(
          dev_ctx.x_context(), out_grad->data<T>(), in_grad->data<T>(),
          rois->data<T>(), roi_id_data, in->dims()[0], channels, height, width,
          out_grad->dims()[0], pooled_height, pooled_width, spatial_scale,
          sampling_ratio, true);
      PADDLE_ENFORCE_EQ(
          r, xpu::Error_t::SUCCESS,
          platform::errors::External(
              "The roi_align_grad XPU OP return wrong value[%d %s]", r,
              XPUAPIErrorMsg[r]));
    }
    if (dev_ctx.x_context()->xpu_stream) {
      dev_ctx.Wait();
    }
    xpu_free(roi_id_data);
D
Double_V 已提交
211 212 213 214 215
  }
};

}  // namespace operators
}  // namespace paddle
216

D
Double_V 已提交
217 218 219 220
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    roi_align,
    ops::XPUROIAlignOpKernel<paddle::platform::XPUDeviceContext, float>);
221 222 223
REGISTER_OP_XPU_KERNEL(
    roi_align_grad,
    ops::XPUROIAlignGradOpKernel<paddle::platform::XPUDeviceContext, float>);
D
Double_V 已提交
224 225

#endif