test_generator_dataloader.py 7.2 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import time
import six
import unittest
from paddle.fluid.reader import DataLoaderBase

EPOCH_NUM = 20
BATCH_SIZE = 32
BATCH_NUM = 20
CLASS_NUM = 10


def random_reader():
    np.random.seed(1)
    for i in range(BATCH_SIZE * BATCH_NUM):
        image = np.random.random([784])
        label = np.random.random_integers(low=0, high=CLASS_NUM - 1)
        yield image, label


def simple_fc_net(places, use_legacy_py_reader, use_double_buffer):
L
Leo Chen 已提交
38 39
    paddle.manual_seed(1)
    paddle.framework.random._manual_program_seed(1)
Z
Zeng Jinle 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    startup_prog = fluid.Program()
    main_prog = fluid.Program()

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
            image = fluid.layers.data(
                name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            py_reader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=4,
                iterable=not use_legacy_py_reader,
                use_double_buffer=use_double_buffer)
            hidden = image
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(
                    hidden,
                    size=hidden_size,
                    act='tanh',
                    bias_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(value=1.0)))

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax')
            loss = fluid.layers.mean(
                fluid.layers.cross_entropy(
                    input=predict_label, label=label))

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, py_reader, loss


class TestBase(unittest.TestCase):
    def run_main(self, use_legacy_py_reader, with_data_parallel, places,
                 use_double_buffer):
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, py_reader, loss = simple_fc_net(
                places, use_legacy_py_reader, use_double_buffer)

            reader = paddle.batch(random_reader, batch_size=BATCH_SIZE)

            ps = places if use_double_buffer else fluid.cpu_places(len(places))

            py_reader.set_sample_list_generator(
                reader, places=ps if py_reader.iterable else None)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if with_data_parallel:
                prog = prog.with_data_parallel(
                    loss_name=loss.name, places=places)

            step = 0
            step_list = []
            loss_list = []
            start_t = time.time()
            if not py_reader.iterable:
                for _ in six.moves.range(EPOCH_NUM):
                    step = 0
                    py_reader.start()
                    while True:
                        try:
                            L, = exe.run(program=prog,
                                         fetch_list=[loss],
                                         use_program_cache=True)
                            loss_list.append(np.mean(L))
                            step += 1
                        except fluid.core.EOFException:
                            py_reader.reset()
                            break
                    step_list.append(step)
            else:
                for _ in six.moves.range(EPOCH_NUM):
                    step = 0
                    for d in py_reader():
                        assert len(d) == len(places), "{} != {}".format(
                            len(d), len(places))
                        for i, item in enumerate(d):
                            image = item['image']
                            label = item['label']
                            assert image.shape() == [BATCH_SIZE, 784]
                            assert label.shape() == [BATCH_SIZE, 1]
127 128
                            assert image._place()._equals(ps[i])
                            assert label._place()._equals(ps[i])
Z
Zeng Jinle 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                        L, = exe.run(program=prog,
                                     feed=d,
                                     fetch_list=[loss],
                                     use_program_cache=True)
                        loss_list.append(np.mean(L))
                        step += 1
                    step_list.append(step)
            end_t = time.time()
            ret = {
                "time": end_t - start_t,
                "step": step_list,
                "loss": np.array(loss_list)
            }
            return ret

    def prepare_places(self, with_data_parallel, with_cpu=True, with_gpu=True):
        places = []
        if with_cpu:
            places.append([fluid.CPUPlace()])
            if with_data_parallel:
                places.append([fluid.CPUPlace()] * 2)

        if with_gpu and fluid.core.is_compiled_with_cuda():
            tmp = fluid.cuda_places()
            assert len(tmp) > 0, "no gpu detected"
            if with_data_parallel:
                places.append(tmp)
            places.append([tmp[0]])
        return places

    def test_main(self):
        for with_data_parallel in [True, False]:
            for p in self.prepare_places(with_data_parallel):
                for use_double_buffer in [False, True]:
                    results = []
                    for use_legacy_py_reader in [False, True]:
                        print(p, use_double_buffer, use_legacy_py_reader)
                        ret = self.run_main(
                            use_legacy_py_reader=use_legacy_py_reader,
                            with_data_parallel=with_data_parallel,
                            places=p,
                            use_double_buffer=use_double_buffer)
                        results.append(ret)
                    if not use_double_buffer:
                        diff = np.max(
                            np.abs(results[0]['loss'] - results[1]['loss']))
                        self.assertLess(diff, 1e-3)


class TestDataLoaderBaseAbstract(unittest.TestCase):
    def test_main(self):
        loader = DataLoaderBase()
        try:
            loader.__iter__()
            self.assertTrue(False)
        except NotImplementedError:
            self.assertTrue(True)

        try:
            loader.__next__()
            self.assertTrue(False)
        except NotImplementedError:
            self.assertTrue(True)


if __name__ == '__main__':
    unittest.main()