sparse_api.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/sparse_api.h"

#include <memory>
#include "glog/logging.h"
#include "paddle/pten/api/lib/api_registry.h"
#include "paddle/pten/api/lib/kernel_dispatch.h"
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/infermeta/unary.h"

PT_DECLARE_KERNEL(dense_to_sparse_coo, CPU, ALL_LAYOUT);
26 27 28
PT_DECLARE_KERNEL(sparse_csr_to_coo, CPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(dense_to_sparse_csr, CPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(sparse_coo_to_csr, CPU, ALL_LAYOUT);
Z
zhangkaihuo 已提交
29 30
PT_DECLARE_KERNEL(sparse_coo_to_dense, CPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(sparse_csr_to_dense, CPU, ALL_LAYOUT);
31 32 33

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PT_DECLARE_KERNEL(dense_to_sparse_coo, GPU, ALL_LAYOUT);
34 35 36
PT_DECLARE_KERNEL(sparse_csr_to_coo, GPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(dense_to_sparse_csr, GPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(sparse_coo_to_csr, GPU, ALL_LAYOUT);
Z
zhangkaihuo 已提交
37 38
PT_DECLARE_KERNEL(sparse_coo_to_dense, GPU, ALL_LAYOUT);
PT_DECLARE_KERNEL(sparse_csr_to_dense, GPU, ALL_LAYOUT);
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#endif

namespace paddle {
namespace experimental {
namespace sparse {

PADDLE_API Tensor to_sparse_coo(const Tensor& x,
                                Backend backend,
                                const int64_t sparse_dim) {
  if (x.layout() == pten::DataLayout::SPARSE_COO) {
    return x;
  }
  // 1. Get kernel signature and kernel
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
  kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend);
  auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
  std::string kernel_name = "dense_to_sparse_coo";
  if (x.layout() == pten::DataLayout::SPARSE_CSR) {
    kernel_name = "sparse_csr_to_coo";
  }

  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, kernel_key);

  VLOG(6) << "to API kernel key: " << kernel_key;
  VLOG(6) << "to API kernel: " << kernel;

  // 2. Get Device Context
  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
  auto kernel_context = pten::KernelContext(dev_ctx);

  // 3. Auto data transform
  if (x.layout() == pten::DataLayout::SPARSE_CSR) {
    auto input = std::dynamic_pointer_cast<pten::SparseCsrTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
  } else {
    auto input = std::dynamic_pointer_cast<pten::DenseTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
    kernel_context.EmplaceBackAttr(sparse_dim);
  }

  // 4. InferMeta
  auto indices_meta = pten::DenseTensorMeta(
      pten::DataType::INT64, {-1}, pten::DataLayout::NCHW);
  auto elements_meta = pten::DenseTensorMeta(x.dtype(), {-1}, x.layout());

  // 5. Prepare outputs
  // create empty SparseCooTensor
  pten::DenseTensor non_zero_indices(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
89
          pten::TransToPtenPlace(backend)),
90 91 92
      std::move(indices_meta));
  pten::DenseTensor non_zero_elements(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
93
          pten::TransToPtenPlace(backend)),
94 95 96 97 98 99 100 101 102 103 104 105 106 107
      std::move(elements_meta));
  auto coo = std::make_shared<pten::SparseCooTensor>(
      non_zero_indices, non_zero_elements, x.dims());

  kernel_context.EmplaceBackOutput(coo.get());
  Tensor out;
  out.set_impl(coo);

  // 6. Call kernel
  kernel(&kernel_context);

  return out;
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
PADDLE_API Tensor to_sparse_csr(const Tensor& x, Backend backend) {
  if (x.layout() == pten::DataLayout::SPARSE_CSR) {
    return x;
  }
  // 1. Get kernel signature and kernel
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
  kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend);
  auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
  std::string kernel_name = "dense_to_sparse_csr";
  if (x.layout() == pten::DataLayout::SPARSE_COO) {
    kernel_name = "sparse_coo_to_csr";
  }

  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, kernel_key);

  VLOG(6) << "to API kernel key: " << kernel_key;
  VLOG(6) << "to API kernel: " << kernel;

  // 2. Get Device Context
  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
  auto kernel_context = pten::KernelContext(dev_ctx);

  // 3. Auto data transform
  if (x.layout() == pten::DataLayout::SPARSE_COO) {
    auto input = std::dynamic_pointer_cast<pten::SparseCooTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
  } else {
    auto input = std::dynamic_pointer_cast<pten::DenseTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
  }

  // 4. InferMeta
  auto crows_meta = pten::DenseTensorMeta(
      pten::DataType::INT64, {-1}, pten::DataLayout::NCHW);
  auto cols_meta = pten::DenseTensorMeta(
      pten::DataType::INT64, {-1}, pten::DataLayout::NCHW);
  auto elements_meta = pten::DenseTensorMeta(x.dtype(), {-1}, x.layout());

  // 5. Prepare outputs
  // create empty SparseCooTensor
  pten::DenseTensor non_zero_crows(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
151
          pten::TransToPtenPlace(backend)),
152 153 154
      std::move(crows_meta));
  pten::DenseTensor non_zero_cols(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
155
          pten::TransToPtenPlace(backend)),
156 157 158
      std::move(cols_meta));
  pten::DenseTensor non_zero_elements(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
159
          pten::TransToPtenPlace(backend)),
160 161 162 163 164 165 166 167 168 169 170 171 172
      std::move(elements_meta));
  auto csr = std::make_shared<pten::SparseCsrTensor>(
      non_zero_crows, non_zero_cols, non_zero_elements, x.dims());

  kernel_context.EmplaceBackOutput(csr.get());
  Tensor out;
  out.set_impl(csr);

  // 6. Call kernel
  kernel(&kernel_context);

  return out;
}
Z
zhangkaihuo 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

PADDLE_API Tensor to_dense(const Tensor& x, Backend backend) {
  if (x.layout() != pten::DataLayout::SPARSE_CSR &&
      x.layout() != pten::DataLayout::SPARSE_COO) {
    return x;
  }
  // 1. Get kernel signature and kernel
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
  kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend);
  auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
  std::string kernel_name = "sparse_coo_to_dense";
  if (x.layout() == pten::DataLayout::SPARSE_CSR) {
    kernel_name = "sparse_csr_to_dense";
  }

  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, kernel_key);

  VLOG(6) << "to API kernel key: " << kernel_key;
  VLOG(6) << "to API kernel: " << kernel;

  // 2. Get Device Context
  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
  auto kernel_context = pten::KernelContext(dev_ctx);

  // 3. Auto data transform
  if (x.layout() == pten::DataLayout::SPARSE_COO) {
    auto input = std::dynamic_pointer_cast<pten::SparseCooTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
  } else {
    auto input = std::dynamic_pointer_cast<pten::SparseCsrTensor>(x.impl());
    kernel_context.EmplaceBackInput(input.get());
  }

  // 4. InferMeta
  auto dense_meta = pten::DenseTensorMeta(x.dtype(), x.dims(), x.layout());

  // 5. Prepare outputs
  // create empty SparseCooTensor
  auto dense_out = std::make_shared<pten::DenseTensor>(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
214
          pten::TransToPtenPlace(backend)),
Z
zhangkaihuo 已提交
215 216 217 218 219 220 221 222 223 224 225 226
      std::move(dense_meta));

  kernel_context.EmplaceBackOutput(dense_out.get());
  Tensor out;
  out.set_impl(dense_out);

  // 6. Call kernel
  kernel(&kernel_context);

  return out;
}

227 228 229 230 231
}  // namespace sparse
}  // namespace experimental
}  // namespace paddle

PT_REGISTER_API(SparseApi);