test_sgd_op.py 5.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
Q
Qiao Longfei 已提交
22 23


24
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
25
    def setUp(self):
Q
qijun 已提交
26 27 28
        self.op_type = "sgd"
        w = np.random.random((102, 105)).astype("float32")
        g = np.random.random((102, 105)).astype("float32")
29
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
30

31 32
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
33

Q
qijun 已提交
34 35 36
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
37

Q
qijun 已提交
38
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
39
    def check_with_place(self, place):
Q
qijun 已提交
40 41 42 43 44 45
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
Q
qiaolongfei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
106
        row_width = 12
Q
qiaolongfei 已提交
107
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
108 109
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
110 111

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
112 113 114 115 116
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
117

Q
qijun 已提交
118
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
119
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
120 121

        # create and initialize Param Variable
Q
qiaolongfei 已提交
122 123 124 125 126 127 128
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
129
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
130 131 132 133 134 135 136
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
137 138

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
139
        lr_value = 0.1
Q
qijun 已提交
140
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
141
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
142 143
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
144 145 146 147 148 149
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
            w_after_optimize[id] = w_before_optimize[
                id] - lr_value * grad_array[index]

Q
qijun 已提交
150 151 152 153 154 155 156
        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
D
dzhwinter 已提交
157
        sgd_op.run(scope, place)
Q
qijun 已提交
158 159

        # get and compare result
Q
qiaolongfei 已提交
160 161
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
162

163
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
164
        places = [core.CPUPlace()]
165
        # do not support GPU kernel currently
Q
qijun 已提交
166 167 168
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
169

Q
Qiao Longfei 已提交
170 171
if __name__ == "__main__":
    unittest.main()