buffered_reader.cc 8.2 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
C
chengduo 已提交
16
#include <memory>
Z
Zeng Jinle 已提交
17
#include <utility>
Y
yuyang18 已提交
18
#include <vector>
D
Dun Liang 已提交
19
#include "paddle/fluid/framework/data_type.h"
20
#include "paddle/fluid/platform/profiler.h"
21

Y
yuyang18 已提交
22 23 24
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
25
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
26
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
27 28
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
29 30 31 32
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
33 34 35 36
    position_.pop();
  }
}

Y
yuyang18 已提交
37 38
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
39
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
40 41 42
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
43 44
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
45
  VLOG(1) << "BufferedReader";
46 47 48 49 50 51 52 53 54 55 56 57 58 59
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(place_) && !pin_memory) {
    int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
60
  is_same_place_ = false;
Y
yuyang18 已提交
61
  cpu_buffer_.resize(buffer_size);
62
  cuda_buffer_.resize(buffer_size);
Y
yuyang18 已提交
63
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
64
}
F
fengjiayi 已提交
65

Y
yuyang18 已提交
66
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
67
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
68
    ReadAsync(i);
Y
yuyang18 已提交
69 70
  }
}
F
fengjiayi 已提交
71

Y
yuyang18 已提交
72
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
73 74 75
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
76

Y
yuyang18 已提交
77 78 79
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
80

D
Dun Liang 已提交
81
#ifdef PADDLE_WITH_CUDA
Y
yuyang18 已提交
82
    if (platform::is_gpu_place(place_)) {
83 84 85
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
86
      } else {
87
        PADDLE_ENFORCE_EQ(
88
            cuda.size(), cpu.size(),
89 90
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
91
      }
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
            cuda_pinned_ptrs.emplace_back(
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type()));
            auto size =
                cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());

            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i],
                         BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()),
                         cpu[i].data<void>(), size);
            cuda[i].set_lod(cpu[i].lod());
          } else {
            // we set same place flag & use cpu[i] directly
            is_same_place_ = true;
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));

        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
          auto cpu_ptr = cpu[i].data<void>();
          auto gpu_ptr = gpu_ptrs[i];
153 154
          auto size =
              cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
          if (platform::is_cuda_pinned_place(cpu_place)) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else if ((platform::is_gpu_place(cpu_place))) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr,
                         BOOST_GET_CONST(platform::CPUPlace, cpu_place),
                         cpu_ptr, size);
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         cuda_pinned_place, cuda_pinned_ptr, size,
                         stream_.get());
            PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
178
        }
179
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
Y
yuyang18 已提交
180
      }
Y
yuyang18 已提交
181
    }
D
Dun Liang 已提交
182
#endif
Y
yuyang18 已提交
183
    return i;
Y
yuyang18 已提交
184 185
  }));
}
F
fengjiayi 已提交
186

Y
yuyang18 已提交
187
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
188
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
189
  reader_->Shutdown();
Y
yuyang18 已提交
190 191 192
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
193
  prev_pos_ = -1UL;
Y
yuyang18 已提交
194
}
F
fengjiayi 已提交
195

Y
yuyang18 已提交
196 197
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
198
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
199
}
F
fengjiayi 已提交
200

Y
yuyang18 已提交
201
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
202 203 204 205 206 207 208 209 210 211 212 213
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

214
  *out = std::move((platform::is_gpu_place(place_) && !is_same_place_)
215
                       ? cuda_buffer_[i]
216
                       : cpu_buffer_[i]);
Y
yuyang18 已提交
217 218 219 220 221 222 223 224

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
225 226 227 228 229
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle