elementwise_sub_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VSUB(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x - eigen_y;
  }
};
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class ElementwiseSubOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Sub"; }
  std::string GetEquation() const override { return "Out = X - Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Substract two tensors element-wise";
  }
};

H
hong 已提交
72 73
template <typename T>
class ElementwiseSubDoubleGradMaker : public framework::SingleGradOpMaker<T> {
74
 public:
H
hong 已提交
75
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
76 77

 protected:
H
hong 已提交
78 79
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
80
    op->SetType("elementwise_sub_grad_grad");
H
hong 已提交
81 82 83 84
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
85

H
hong 已提交
86
    op->SetAttrMap(this->Attrs());
87

H
hong 已提交
88
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
89 90 91 92 93 94 95
    return op;
  }
};

}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
96
namespace ops = paddle::operators;
97
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_sub, Sub);
98
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_sub, Sub);
99

H
hong 已提交
100 101 102 103 104
REGISTER_OPERATOR(
    elementwise_sub_grad, ops::ElementwiseOpExplicitGrad,
    ops::ElementwiseGradOpInplace, ops::ElementwiseGradNoBufVarsInference,
    ops::ElementwiseSubDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseSubDoubleGradMaker<paddle::imperative::OpBase>);
105
REGISTER_OPERATOR(elementwise_sub_grad_grad,
106 107 108
                  ops::ElementwiseOpDoubleGradWithoutDXDY,
                  ops::ElementwiseDoubleGradOpInplace,
                  ops::ElementwiseDoubleGradNoBufVarsInference);
109

G
gongweibao 已提交
110 111
REGISTER_OP_CPU_KERNEL(
    elementwise_sub,
Q
QI JUN 已提交
112 113 114 115
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
116 117
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad,
Q
QI JUN 已提交
118 119 120 121
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
122 123 124 125 126 127 128 129 130 131
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);