multiary.h 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

38 39
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
40

F
From00 已提交
41 42 43 44 45 46 47 48 49 50
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
51 52 53 54 55 56 57 58
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      float epsilon,
                      MetaTensor* param_out,
                      MetaTensor* moment_out);

F
From00 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

72 73 74 75 76 77 78
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
79 80
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
102 103
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

121
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
122 123 124
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

125 126 127 128 129 130 131 132 133 134 135 136
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

H
hong 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

157 158 159 160 161 162 163 164 165 166 167 168 169
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

170 171 172
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
173
                                    const MetaTensor& bias,
174 175 176
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

177
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
178 179
                               std::vector<MetaTensor*> out);

180
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
181 182 183
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
184

185 186 187
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
188
                             const MetaTensor& mask,
189 190 191 192 193 194 195 196 197
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

198 199 200
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
201 202 203
                                  const MetaTensor& path,
                                  const MetaTensor& code,
                                  const MetaTensor& bias,
204 205 206 207 208 209 210 211 212 213 214
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out);

215 216
void InterpolateInferMeta(
    const MetaTensor& x,
217 218 219
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
220 221 222 223 224 225 226 227 228 229 230
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

231 232 233 234 235 236
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
                       MetaTensor* out);

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

258
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
259 260
                       std::vector<MetaTensor*> outputs);

261 262 263 264
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
265
                       const MetaTensor& master_param,
266 267 268 269 270 271 272 273 274 275
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

276 277
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
278

279
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
280 281 282
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
283 284
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
285
                        const MetaTensor& rois_num,
F
From00 已提交
286 287 288 289 290 291
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
292 293 294 295 296
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
297
                      const MetaTensor& mean_grad,
H
hong 已提交
298 299 300 301 302 303 304 305 306
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
                      MetaTensor* mean_grad_out);

307
void RnnInferMeta(const MetaTensor& x,
308 309
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
310
                  const MetaTensor& sequence_length,
311 312 313 314 315 316 317 318 319 320 321 322 323
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

Z
zyfncg 已提交
324
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
325 326
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
327
                  const MetaTensor& master_param,
H
hong 已提交
328 329 330 331
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

332
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
333 334 335
                    int axis,
                    MetaTensor* out);

336
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
337 338
                             std::vector<MetaTensor*> out);

0
0x45f 已提交
339 340
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
341 342
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
343 344 345 346 347
                      int blank,
                      bool norm_by_times,
                      MetaTensor* warpctc_grad,
                      MetaTensor* loss);

348 349 350 351
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
352

S
Siming Dai 已提交
353 354 355
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
356 357
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
S
Siming Dai 已提交
358 359 360 361 362
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

363 364 365 366 367 368 369 370 371 372 373
void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);
S
Siming Dai 已提交
374

375 376 377
void Yolov3LossInferMeta(const MetaTensor& x,
                         const MetaTensor& gt_box,
                         const MetaTensor& gt_label,
378
                         const MetaTensor& gt_score,
379 380 381 382 383 384 385 386 387 388 389
                         const std::vector<int>& anchors,
                         const std::vector<int>& anchor_mask,
                         int class_num,
                         float ignore_thresh,
                         int downsample_ratio,
                         bool use_label_smooth,
                         float scale_x_y,
                         MetaTensor* loss,
                         MetaTensor* objectness_mask,
                         MetaTensor* gt_match_mask);

390
}  // namespace phi