conv_grad_kernel_impl.h 9.5 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
#include "paddle/phi/kernels/conv_grad_kernel.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void ConvGradKernel(const Context& dev_ctx,
                    const DenseTensor& output_grad,
                    const DenseTensor& input,
                    const DenseTensor& filter_t,
                    const std::vector<int>& strides,
                    const std::vector<int>& paddings_t,
                    const std::string& padding_algorithm,
                    int groups,
                    const std::vector<int>& dilations_t,
                    const std::string& data_format,
                    bool use_addto,
                    int workspace_size_MB,
                    bool exhaustive_search,
                    DenseTensor* input_grad,
                    DenseTensor* filter_grad) {
  // The filter and filter_grad will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.

  if (!input_grad && !filter_grad) return;
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;

  DenseTensor filter = filter_t;
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  DenseTensor transformed_input(input.type());
  DenseTensor transformed_output_grad(output_grad.type());

  if (channel_last) {
    ResizeToChannelFirst<Context, T>(dev_ctx, &input, &transformed_input);
    TransToChannelFirst<Context, T>(dev_ctx, &input, &transformed_input);

    ResizeToChannelFirst<Context, T>(
        dev_ctx, &output_grad, &transformed_output_grad);
    TransToChannelFirst<Context, T>(
        dev_ctx, &output_grad, &transformed_output_grad);
  } else {
    transformed_input = input;
    transformed_output_grad = output_grad;
  }

  // update padding and dilation
  auto in_dims = transformed_input.dims();
  auto filter_dims = filter.dims();
  DDim in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation<int>(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  const int batch_size = static_cast<int>(transformed_input.dims()[0]);

  // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
  std::vector<int64_t> filter_shape_vec(vectorize(filter.dims()));
  // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
  std::vector<int64_t> output_shape_vec(
      vectorize(transformed_output_grad.dims()));

  // use col_shape in the im2col calculation
  // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
  // o_h, o_w}
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = transformed_input.dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  DDim col_shape(make_ddim(col_shape_vec));

  // use col_matrix_shape in the gemm calculation
  // size: (i_c/g * k_h * k_w, o_h * o_w)
  // or
  // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
  DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim + 1);

  DDim input_shape =
      slice_ddim(transformed_input.dims(), 1, transformed_input.dims().size());

  DDim filter_matrix_shape = {filter.dims()[0],
                              filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);

  DDim output_matrix_shape = {
      transformed_output_grad.dims()[1],
      transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                         transformed_output_grad.dims()[1])};

  // convolution backward input operator:  gemm + col2im(or col2vol)
  // convolution backward weight operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
  int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);

  DenseTensor col;
  // col_matrix shares the same piece of data with col,
  // but will be reshaped into a two-dimensional matrix shape
  // to call the matrix multiplication interface.
  DenseTensor col_matrix;
  if (is_expand) {
    col.Resize(col_shape);
    col.mutable_data<T>(dev_ctx.GetPlace());
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  phi::funcs::SetConstant<Context, T> set_zero;
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);

  if (input_grad) {
    input_grad->mutable_data<T>(dev_ctx.GetPlace());
    DenseTensor transformed_input_grad(input_grad->type());
    if (channel_last) {
      ResizeToChannelFirst<Context, T>(
          dev_ctx, input_grad, &transformed_input_grad);

    } else {
      transformed_input_grad = *input_grad;
    }
    // if is_expand is false, the operation of set_zero is unnecessary,
    // because math::matmul will reset input_grad.
    if (is_expand) {
      set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
    }
    paddle::operators::math::Col2VolFunctor<Context, T> col2vol;
    paddle::operators::math::
        Col2ImFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
            col2im;

    for (int i = 0; i < batch_size; i++) {
      DenseTensor out_grad_batch =
          transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
      DenseTensor in_grad_batch =
          transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
      for (int g = 0; g < groups; g++) {
        // gemm
        DenseTensor out_grad_slice =
            out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
        DenseTensor filter_slice =
            filter.Slice(g * out_step, (g + 1) * out_step);

        DenseTensor in_grad_slice =
            in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

        if (!is_expand) {
          col_matrix.ShareDataWith(in_grad_slice);
          col_matrix.Resize(col_matrix_shape);
        }
        blas.MatMul(filter_slice,
                    true,
                    out_grad_slice,
                    false,
                    T(1.0),
                    &col_matrix,
                    T(0.0));

        if (is_expand && data_dim == 2U) {
          col2im(dev_ctx,
                 col,
                 dilations,
                 strides,
                 std::vector<int>{
                     paddings[0], paddings[2], paddings[1], paddings[3]},
                 &in_grad_slice);
        } else if (is_expand && data_dim == 3U) {
          col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
        }
      }
    }
    if (channel_last) {
      TransToChannelLast<Context, T>(
          dev_ctx, &transformed_input_grad, input_grad);
    }
  }

  if (filter_grad) {
    filter_grad->mutable_data<T>(dev_ctx.GetPlace());
    Tensor filter_grad_ = *filter_grad;
    filter_grad_.Resize(filter_matrix_shape);
    set_zero(dev_ctx, filter_grad, static_cast<T>(0));
    paddle::operators::math::
        Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
            im2col;
    paddle::operators::math::Vol2ColFunctor<Context, T> vol2col;
    for (int i = 0; i < batch_size; i++) {
      DenseTensor out_grad_batch =
          transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
      DenseTensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(input_shape);
      for (int g = 0; g < groups; g++) {
        // im2col
        DenseTensor out_grad_slice =
            out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
        DenseTensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

        if (!is_expand) {
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
        } else if (data_dim == 2U) {
          im2col(dev_ctx,
                 in_slice,
                 dilations,
                 strides,
                 std::vector<int>{
                     paddings[0], paddings[2], paddings[1], paddings[3]},
                 &col);

        } else if (data_dim == 3U) {
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
        }

        // gemm
        DenseTensor filter_grad_slice =
            filter_grad_.Slice(g * out_step, (g + 1) * out_step);
        blas.MatMul(out_grad_slice,
                    false,
                    col_matrix,
                    true,
                    T(1.0),
                    &filter_grad_slice,
                    T(1.0));
      }
    }
  }
}

}  // namespace phi