dynamic_recurrent_op.cc 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve .

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/dynamic_recurrent_op.h"

#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Scope;
using framework::TensorArray;
using framework::LoDTensor;
using framework::Variable;
26
using framework::DySeqMetaBatch;
27 28 29 30 31 32

namespace detail {

inline void CreateVariables(Scope& scope,
                            const std::vector<std::string>& var_names) {
  for (const auto& name : var_names) {
D
dongzhihong 已提交
33
    scope.Var(name);
34 35 36
  }
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * The inputs with sequence should be reordered when they are split, so the
 * boot_states should be reordered in the same order.
 *
 * NOTE This may require that the `pre_state` of the first time step should just
 * copy the `boot_state` rather than reference it, for that the content should
 * be reordered, but the RNN op should not change the `boot_state` as an input
 * variable's content.
 */
template <typename T>
inline void ReorderBootState(const DySeqMetaBatch& metas,
                             const LoDTensor& boot_state, LoDTensor* tensor,
                             const platform::Place& dst_place) {
  for (size_t seq_id = 0; seq_id < metas.size(); seq_id++) {
    auto slice = tensor->Slice<T>(seq_id, seq_id + 1);
    auto boot_slice =
        boot_state.Slice<T>(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1);
    // TODO(superjom) pass in device context as an argument
    slice.template CopyFrom<T>(boot_slice, dst_place,
                               platform::CPUDeviceContext());
  }
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
}  // namespace detail

class DynamicRecurrentOpProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = DynamicRecurrentOp::kArgName;
    // inputs and outputs stored in proto
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
        .AsDuplicable();
    AddInput(name.boot_memories, "variables to initialize memories.")
        .AsDuplicable();

    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
        .AsDuplicable();
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a RNN operator for varience-length sequences.");
  }
};

void DynamicRecurrentOp::Run(const Scope& scope,
                             const platform::DeviceContext& dev_ctx) const {
  cache_.Init(kArgName, *this, scope, &arg_);
  SplitInputs();
  CreateScopes();
  WriteStepInputs();
  InitStates();
96
  WriteStepOutputs();
97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // call stepnet in all the time steps
  for (size_t step = 0; step < cache_.num_steps; step++) {
    auto& step_scope = cache_.GetScope(step);
    stepnet_->Run(step_scope, dev_ctx);
  }

  ConcatOutputs();
}

void DynamicRecurrentOp::SplitInputs() const {
  // TODO(superjom) make level a config
  // TODO(superjom) check all the inputs has the same LoD
  int level = 0;
111
  for (const auto& item : cache_.inlinks) {
112 113 114
    const auto& var = item.second;
    const auto& tensor = var->Get<LoDTensor>();
    TensorArray& ta = step_inputs_[item.first];
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    dy_seq_metas_[item.first] =
        ta.Unpack(tensor, level, true /*length_descend*/);

    if (cache_.num_steps) {
      PADDLE_ENFORCE_EQ(ta.size(), cache_.num_steps,
                        "inputs should have the same steps");
    } else {
      cache_.num_steps = ta.size();
    }
  }
}

void DynamicRecurrentOp::WriteStepInputs() const {
  for (const auto& item : cache_.inlinks) {
    auto ta_it = step_inputs_.find(item.first);
    PADDLE_ENFORCE(ta_it != step_inputs_.end(),
                   "step_inputs_ not compatible with memory set");
    TensorArray& ta = ta_it->second;
    for (size_t step = 0; step < ta.size(); step++) {
      auto tensor = ta.Read(step);
      auto& step_scope = cache_.GetScope(step);
      Variable* var = step_scope.FindVar(item.first);
      if (var == nullptr) {
D
dongzhihong 已提交
139
        var = step_scope.Var(item.first);
140 141 142 143 144 145 146
      }
      var->GetMutable<LoDTensor>()->ShareDataWith<value_type>(tensor);
    }
  }
}

void DynamicRecurrentOp::WriteStepOutputs() const {
147 148 149
  // initialize step outputs
  for (const auto& item : cache_.outlinks) {
    step_outputs_.emplace(item.first, TensorArray());
150
  }
151
  PADDLE_ENFORCE_GT(step_outputs_.size(), 0UL);
152 153 154 155 156 157 158 159 160 161 162 163 164 165
}

void DynamicRecurrentOp::CreateScopes() const {
  PADDLE_ENFORCE_GT(cache_.num_steps, 0);
  // resize scopes
  size_t num_scopes_need_create = cache_.num_steps - cache_.scopes->size();
  for (size_t i = 0; i < num_scopes_need_create; i++) {
    cache_.scopes->emplace_back(&cache_.scope->NewScope());
  }

  // init temporary inputs
  PADDLE_ENFORCE_NOT_NULL(stepnet_, "stepnet should be set first");
  std::vector<std::string> memories;
  std::vector<std::string> pre_memories;
166
  std::vector<std::string> stepnet_outputs;
167 168 169 170 171 172
  std::transform(arg_.memories.begin(), arg_.memories.end(),
                 std::back_inserter(memories),
                 [](const rnn::MemoryAttr& m) { return m.var; });
  std::transform(arg_.memories.begin(), arg_.memories.end(),
                 std::back_inserter(pre_memories),
                 [](const rnn::MemoryAttr& m) { return m.pre_var; });
173 174 175 176 177
  for (const auto& item : stepnet_->Outputs()) {
    for (const auto& var : item.second) {
      stepnet_outputs.push_back(var);
    }
  }
178 179 180 181 182 183 184

  for (size_t step = 0; step < cache_.num_steps; step++) {
    auto& scope = cache_.GetScope(step);
    detail::CreateVariables(scope, arg_.inlinks);
    detail::CreateVariables(scope, arg_.outlinks);
    detail::CreateVariables(scope, memories);
    detail::CreateVariables(scope, pre_memories);
185
    detail::CreateVariables(scope, stepnet_outputs);
186 187 188 189 190 191
  }
}

void DynamicRecurrentOp::ConcatOutputs() const {
  // TODO(superjom) transform this to a config
  int level = 0;
192 193 194 195 196 197 198 199 200 201 202 203 204 205
  for (size_t step = 0; step < cache_.num_steps; step++) {
    auto& scope = cache_.GetScope(step);
    for (auto& item : step_outputs_) {
      auto* var = scope.FindVar(item.first);
      PADDLE_ENFORCE_NOT_NULL(var);
      auto* tensor = var->GetMutable<LoDTensor>();
      tensor->mutable_data<value_type>(platform::CPUPlace());
      item.second.WriteShared(step, *tensor);
    }
  }
  // the inlinks' lods should be the same, so randomly get one lod.
  const auto& some_lod =
      cache_.scope->FindVar(arg_.inlinks.front())->Get<LoDTensor>().lod();
  const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()];
206
  for (auto& item : step_outputs_) {
207 208 209
    auto tensor = item.second.Pack(level, some_meta, some_lod);
    auto* output = cache_.outlinks[item.first]->GetMutable<LoDTensor>();
    const_cast<LoDTensor*>(output)->ShareDataWith<value_type>(tensor);
210 211 212 213
  }
}

void DynamicRecurrentOp::InitStates() const {
214 215 216 217
  for (size_t step = 0; step < cache_.num_steps; step++) {
    for (const auto& memory : arg_.memories) {
      CreateState(memory, step);
      LinkState(memory, step);
218 219 220 221
    }
  }
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory,
                                     size_t step) const {
  auto& scope = cache_.GetScope(step);
  auto& state = *cache_.GetTensor(scope, memory.var);
  auto& boot_state = *cache_.GetTensor(*cache_.scope, memory.boot_var);

  size_t num_instances =
      step_inputs_[arg_.inlinks.front()].Read(step).dims()[0];
  auto dims = boot_state.dims();
  dims[0] = num_instances;

  state.Resize(dims);
  state.mutable_data<value_type>(platform::CPUPlace());
  states_[memory.var].WriteShared(step, state);
}

void DynamicRecurrentOp::LinkState(const rnn::MemoryAttr& memory,
                                   size_t step) const {
  auto& scope = cache_.GetScope(step);
  auto& state_pre = *cache_.GetTensor(scope, memory.pre_var);

  // all the step_inputs' metas should be the same, just randomly select one
  // and get the dyseq meta.
  const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()];
  size_t num_instances =
      step_inputs_[arg_.inlinks.front()].Read(step).dims()[0];

  LoDTensor* pre_state{nullptr};
  if (step == 0) {
    pre_state = cache_.GetTensor(*cache_.scope, memory.boot_var);
    pre_state->mutable_data<float>(platform::CPUPlace());
    // allocate memory
    state_pre.Resize(pre_state->dims());
    state_pre.mutable_data<value_type>(platform::CPUPlace());
    detail::ReorderBootState<value_type>(some_meta, *pre_state, &state_pre,
                                         pre_state->place());
  } else {
    pre_state = cache_.GetTensor(cache_.GetScope(step - 1), memory.var);
  }

  // shink and share from previous state
  auto shrinked_pre_state = pre_state->Slice<value_type>(0, num_instances);
  state_pre.ShareDataWith<value_type>(shrinked_pre_state);
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
void DynamicRecurrentOp::ArgCache::Init(
    const rnn::ArgumentName& name, const paddle::framework::OperatorBase& op,
    const paddle::framework::Scope& scope, rnn::Argument* arg) {
  this->scope = &scope;
  InitArgument(name, op, arg);
  CacheScopes(scope, *arg);
  CacheInlinks(scope, arg->inlinks);
  CacheOutlinks(scope, arg->outlinks);
}

void DynamicRecurrentOp::ArgCache::InitArgument(const rnn::ArgumentName& name,
                                                const OperatorBase& op,
                                                rnn::Argument* arg) {
  rnn::InitArgument(name, arg, op, false /*is_grad*/);
}

void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope,
                                               const rnn::Argument& arg) {
  auto scopes_var = scope.FindVar(arg.step_scopes);
  PADDLE_ENFORCE(scopes_var != nullptr,
                 "the step_scopes output argument [%s] should be created first "
                 "by framework.",
                 arg.step_scopes);
  this->scopes = scopes_var->GetMutable<std::vector<Scope*>>();
}

void DynamicRecurrentOp::ArgCache::CacheInlinks(
    const Scope& scope, const std::vector<std::string>& names) {
  for (auto name : names) {
    auto* var = GetVariable(scope, name);
    inlinks[name] = var;
  }
}

void DynamicRecurrentOp::ArgCache::CacheOutlinks(
    const Scope& scope, const std::vector<std::string>& names) {
  for (auto name : names) {
    auto* var = GetVariable(scope, name);
    outlinks[name] = var;
  }
}

Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
                                                    const std::string& name) {
  auto* var = scope.FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(var, "variable [%s] not exist in scope", name);
  return var;
}

316 317 318 319 320 321
LoDTensor* DynamicRecurrentOp::ArgCache::GetTensor(
    const framework::Scope& scope, const std::string& name) {
  auto* var = GetVariable(scope, name);
  return var->GetMutable<LoDTensor>();
}

322 323 324 325 326 327 328 329 330 331 332 333 334
const rnn::ArgumentName DynamicRecurrentOp::kArgName{
    "step_net", "step_scopes",  "inlinks",      "outlinks",
    "memories", "pre_memories", "boot_memories"};

void DynamicRecurrentGradientOp::Run(
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {}

}  // namespace operators
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    dynamic_recurrent, paddle::operators::DynamicRecurrentOp,
    paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker);