pool_grad_kernel.cu 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
16

17 18 19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
21
#include "paddle/phi/core/tensor_utils.h"
22
#include "paddle/phi/core/visit_type.h"
23
#include "paddle/phi/kernels/empty_kernel.h"
24 25 26 27 28 29 30
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"

namespace phi {
namespace sparse {

31
template <typename T, typename IntT = int>
32 33 34
__global__ void MaxPoolGradCudaKernel(const T* in_features_ptr,
                                      const T* out_features_ptr,
                                      const T* out_grad_ptr,
35
                                      const IntT* rulebook_ptr,
36 37 38 39 40 41 42 43
                                      const int n,
                                      const int rulebook_len,
                                      const int channels,
                                      T* x_grad_ptr) {
  phi::funcs::MaxPoolGrad<T> grad_functor;
  CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) {
    int real_i = i / channels;
    int c = i - real_i * channels;
44 45
    IntT in_i = rulebook_ptr[real_i];
    IntT out_i = rulebook_ptr[real_i + rulebook_len];
46 47 48 49 50 51 52 53
    grad_functor.compute(in_features_ptr[in_i * channels + c],
                         out_features_ptr[out_i * channels + c],
                         out_grad_ptr[out_i * channels + c],
                         1,
                         &x_grad_ptr[in_i * channels + c]);
  }
}

54
template <typename T, typename IntT = int>
55 56 57
void MaxPoolCooGradGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             const DenseTensor& rulebook,
58
                             const DenseTensor& counter,
59 60 61 62
                             const SparseCooTensor& out,
                             const SparseCooTensor& out_grad,
                             const std::vector<int>& kernel_sizes,
                             SparseCooTensor* x_grad) {
63 64 65
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const int in_channels = x.dims()[4];
  int rulebook_len = rulebook.dims()[1];
66
  const IntT* rulebook_ptr = rulebook.data<IntT>();
67 68 69
  std::vector<int> offsets(kernel_size + 1);
  const int* counter_ptr = counter.data<int>();
  phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size);
70 71 72

  const T* in_features_ptr = x.non_zero_elements().data<T>();
  const T* out_features_ptr = out.non_zero_elements().data<T>();
73 74 75 76 77 78 79 80 81 82 83 84 85 86
  const T* out_grad_ptr = out_grad.non_zero_elements().data<T>();
  // TODO(zhangkaihuo): call phi::sparse::EmptyLike
  DenseTensor x_grad_indices =
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
  T* x_grad_ptr = x_grad_values.data<T>();
  phi::funcs::SetConstant<GPUContext, T> set_zero;
  set_zero(dev_ctx, &x_grad_values, static_cast<T>(0.0f));
  phi::Copy<GPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
87 88

  for (int i = 0; i < kernel_size; i++) {
89
    if (counter_ptr[i] <= 0) {
90 91 92 93
      continue;
    }

    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
94
        dev_ctx, counter_ptr[i] * in_channels, 1);
95 96 97 98 99 100 101
    MaxPoolGradCudaKernel<T, IntT>
        <<<config.block_per_grid.x,
           config.thread_per_block.x,
           0,
           dev_ctx.stream()>>>(in_features_ptr,
                               out_features_ptr,
                               out_grad_ptr,
102 103
                               rulebook_ptr + offsets[i],
                               counter_ptr[i],
104 105 106
                               rulebook_len,
                               in_channels,
                               x_grad_ptr);
107 108 109
  }
}

110
template <typename T, typename Context>
111 112 113
void MaxPoolCooGradKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          const DenseTensor& rulebook,
114
                          const DenseTensor& counter,
115 116 117 118
                          const SparseCooTensor& out,
                          const SparseCooTensor& out_grad,
                          const std::vector<int>& kernel_sizes,
                          SparseCooTensor* x_grad) {
119
  PD_VISIT_INTEGRAL_TYPES(
120 121
      x.non_zero_indices().dtype(), "MaxPoolCooGradGPUKernel", ([&] {
        MaxPoolCooGradGPUKernel<T, data_t>(
122
            dev_ctx, x, rulebook, counter, out, out_grad, kernel_sizes, x_grad);
123 124 125
      }));
}

126 127 128
}  // namespace sparse
}  // namespace phi

129
PD_REGISTER_KERNEL(maxpool_coo_grad,
130 131
                   GPU,
                   ALL_LAYOUT,
132
                   phi::sparse::MaxPoolCooGradKernel,
133 134 135 136
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
反馈
建议
客服 返回
顶部