helper.h 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
Y
Yan Chunwei 已提交
18 19 20 21
#include <fstream>
#if !defined(_WIN32)
#include <sys/time.h>
#endif
22
#include <algorithm>
L
luotao1 已提交
23
#include <chrono>  // NOLINT
P
peizhilin 已提交
24
#include <iterator>
25
#include <numeric>
26 27 28
#include <sstream>
#include <string>
#include <vector>
29
#include "paddle/fluid/inference/api/paddle_inference_api.h"
30
#include "paddle/fluid/platform/enforce.h"
P
peizhilin 已提交
31
#include "paddle/fluid/platform/port.h"
32
#include "paddle/fluid/string/printf.h"
33 34 35 36

namespace paddle {
namespace inference {

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

N
nhzlx 已提交
54 55 56 57 58
static int GetUniqueId() {
  static int id = 0;
  return id++;
}

59 60
static void split(const std::string &str, char sep,
                  std::vector<std::string> *pieces) {
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  pieces->clear();
  if (str.empty()) {
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
76 77
static void split_to_float(const std::string &str, char sep,
                           std::vector<float> *fs) {
78 79 80 81 82
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
                 [](const std::string &v) { return std::stof(v); });
}
L
luotao1 已提交
83 84 85 86 87 88 89
static void split_to_int64(const std::string &str, char sep,
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
                 [](const std::string &v) { return std::stoi(v); });
}
T
Tao Luo 已提交
90 91 92 93
static void split_to_int(const std::string &str, char sep,
                         std::vector<int> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
L
luotao1 已提交
94 95 96
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
                 [](const std::string &v) { return std::stoi(v); });
}
97 98 99 100 101 102 103 104 105 106
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
107 108
    const std::vector<std::vector<float>> &vec);

109 110
template <>
std::string to_string<std::vector<std::vector<float>>>(
111 112
    const std::vector<std::vector<std::vector<float>>> &vec);

113 114 115 116 117
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

L
luotao1 已提交
118 119 120
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
121
  // Assign buffer
122 123
  int num_elems = VecReduceToInt(tensor->shape);
  tensor->data.Resize(sizeof(T) * num_elems);
124 125
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
126 127 128
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
129 130 131
  }
}

T
Tao Luo 已提交
132 133 134 135 136 137 138 139 140 141
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data,
                             const std::vector<size_t> &lod) {
  int size = lod[lod.size() - 1];
  tensor->shape.assign({size, 1});
  tensor->lod.assign({lod});
  TensorAssignData(tensor, data);
}

142
template <typename T>
L
luotao1 已提交
143 144
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const std::vector<std::vector<T>> &data) {
145 146 147 148 149 150 151
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
L
luotao1 已提交
152 153 154 155 156 157 158 159 160
}

template <typename T>
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const PaddleBuf &data) {
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  for (size_t i = 0; i < data.length() / sizeof(T); i++) {
    ptr[i] = *(reinterpret_cast<T *>(data.data()) + i);
  }
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
208 209
static std::string DescribeTensor(const PaddleTensor &tensor,
                                  int max_num_of_data = 15) {
L
luotao1 已提交
210 211 212 213 214 215 216 217 218 219
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
220 221 222
    case PaddleDType::INT32:
      os << "int32";
      break;
L
luotao1 已提交
223 224 225 226 227 228 229 230 231 232 233
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
T
tensor-tang 已提交
234 235
  os << " - memory length: " << tensor.data.length();
  os << "\n";
L
luotao1 已提交
236

T
tensor-tang 已提交
237
  os << " - data: ";
238
  int dim = VecReduceToInt(tensor.shape);
T
tensor-tang 已提交
239
  float *pdata = static_cast<float *>(tensor.data.data());
L
luotao1 已提交
240
  for (int i = 0; i < dim; i++) {
T
tensor-tang 已提交
241
    os << pdata[i] << " ";
L
luotao1 已提交
242 243 244 245 246
  }
  os << '\n';
  return os.str();
}

247 248 249 250 251 252 253 254 255 256 257 258 259
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
T
tensor-tang 已提交
260 261 262
  os << " - numel: " << size;
  os << "\n";
  os << " - data: ";
263 264 265 266 267 268
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

269
static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
270 271 272 273
                      double batch_latency, int epoch = 1) {
  PADDLE_ENFORCE(batch_size > 0, "Non-positive batch size.");
  double sample_latency = batch_latency / batch_size;
  LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
274
            << " ======";
275 276 277 278 279 280
  LOG(INFO) << "====== batch_size: " << batch_size << ", iterations: " << epoch
            << ", repetitions: " << repeat << " ======";
  LOG(INFO) << "====== batch latency: " << batch_latency
            << "ms, number of samples: " << batch_size * epoch
            << ", sample latency: " << sample_latency
            << "ms, fps: " << 1000.f / sample_latency << " ======";
L
luotao1 已提交
281 282
}

Y
Yan Chunwei 已提交
283 284 285 286 287 288 289
static bool IsFileExists(const std::string &path) {
  std::ifstream file(path);
  bool exists = file.is_open();
  file.close();
  return exists;
}

290 291
}  // namespace inference
}  // namespace paddle