test_tracer.cc 18.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
21
#include <set>
J
Jiabin Yang 已提交
22 23 24 25
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/imperative/tracer.h"
26
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
73
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
74 75 76 77
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
112
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
113 114 115 116
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
117 118 119 120 121 122
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
123
      new imperative::VarBase(true, "y_in"));
124
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
150
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
151 152 153
  ASSERT_EQ(x_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOps().size(), 1UL);
J
Jiabin Yang 已提交
154 155 156 157 158 159 160 161 162 163
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
164
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
165
  platform::CPUPlace place;
166
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
189
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
190 191 192 193

  ASSERT_EQ(x_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOps().size(), 1UL);
J
Jiabin Yang 已提交
194
}
195 196 197 198 199 200
#if defined(PADDLE_WITH_CUDA)
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
201
  x_in->SetOverridedStopGradient(false);  // force to run backward
202 203
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
204
  y_in->SetOverridedStopGradient(false);
205 206 207 208 209 210
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
211
  std::vector<int64_t> dims2 = {2, 5};
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
H
hong 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  tracer.TraceOp("elementwise_add", ins, outs, mul_attr_map, gpu_place, true);

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
  tracer.TraceOp("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                 gpu_place, true);
  detail::BackwardStrategy back_st;
  imperative::Engine* engine = tracer.GetDefaultEngine();
  engine->Init(reduce_sum_out.get(), back_st);
  engine->Execute();

247 248 249
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
250
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
251 252 253 254 255 256
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
257
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
258 259 260 261 262 263 264
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

265
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
266 267 268 269 270 271 272
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

273
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
274
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
275 276
  }
}
H
hong 已提交
277

278
#endif
279 280 281 282 283 284

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
L
Leo Chen 已提交
285 286
  ASSERT_STREQ("fc_0", fc_1.c_str());
  ASSERT_STREQ("fc_1", fc_2.c_str());
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
  // set to CUDAPlace
  platform::CUDAPlace gpu_place(0);
  tracer.SetExpectedPlace(gpu_place);
  ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

349 350 351 352
  ASSERT_EQ(x_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOps().size(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOps().size(), 1UL);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  detail::BackwardStrategy back_st;
  imperative::Engine* engine = tracer.GetDefaultEngine();
  engine->Init(vout.get(), back_st);
  engine->Execute();

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
template <typename T>
using WeakPtrSet =
    std::set<std::weak_ptr<T>, std::owner_less<std::weak_ptr<T>>>;

static void TestVarOpDestructionMain(const platform::Place& place,
                                     int64_t tensor_size = 10,
                                     size_t loop_num = 10) {
  WeakPtrSet<VariableWrapper> var_wrappers;
  WeakPtrSet<VarBase> var_bases;
  WeakPtrSet<OpBase> op_bases;

  Tracer tracer;

  {
    auto x = std::make_shared<VarBase>("x");
    auto y = std::make_shared<VarBase>("y");

    x->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    y->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    x->SetOverridedStopGradient(false);
    y->SetOverridedStopGradient(true);

    for (size_t i = 0; i < loop_num; ++i) {
      size_t var_wrapper_num = var_wrappers.size();
      size_t var_base_num = var_bases.size();
      size_t op_base_num = op_bases.size();

      auto z = std::make_shared<VarBase>("z_" + std::to_string(i));
      tracer.TraceOp("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}},
                     NameVarBaseMap{{"Out", {z}}}, framework::AttributeMap{},
                     place, true);

      ASSERT_EQ(z->GradOps().size(), 0UL);
      ASSERT_EQ(z->GradVarBase()->GradOps().size(), 1UL);
      auto new_op = z->GradVarBase()->GradOps()[0];

      ASSERT_EQ(x->GradOps().size(), 0UL);
      ASSERT_EQ(y->GradOps().size(), 0UL);

      std::unordered_set<std::shared_ptr<OpBase>> expected_pending_ops;
      if (i == 0) {
        ASSERT_EQ(x->GradVarBase()->GradOps().size(), 0UL);
        ASSERT_EQ(y->GradVarBase()->GradOps().size(), 0UL);
      } else {
        ASSERT_EQ(x->GradVarBase()->GradOps().size(), 1UL);
        ASSERT_EQ(y->GradVarBase()->GradOps().size(), 0UL);

        for (auto& op : x->GradVarBase()->GradOps()) {
          expected_pending_ops.emplace(op);
        }
        for (auto& op : y->GradVarBase()->GradOps()) {
          expected_pending_ops.emplace(op);
        }

        std::unordered_set<std::shared_ptr<OpBase>> actual_pending_ops;
        for (auto& op : new_op->GradPendingOps()) {
          actual_pending_ops.emplace(op);
        }

        ASSERT_TRUE(expected_pending_ops == actual_pending_ops);
        ASSERT_EQ(expected_pending_ops.count(new_op), 0UL);
      }

      var_wrappers.emplace(x->SharedVar());
      var_wrappers.emplace(x->GradVarBase()->SharedVar());
      var_wrappers.emplace(y->SharedVar());
      var_wrappers.emplace(y->GradVarBase()->SharedVar());
      var_wrappers.emplace(z->SharedVar());
      var_wrappers.emplace(z->GradVarBase()->SharedVar());

      var_bases.emplace(x);
      var_bases.emplace(x->GradVarBase());
      var_bases.emplace(y);
      var_bases.emplace(y->GradVarBase());
      var_bases.emplace(z);
      var_bases.emplace(z->GradVarBase());

      for (auto& op : expected_pending_ops) {
        op_bases.emplace(op);
      }

      if (i == 0) {
        ASSERT_EQ(var_wrapper_num, 0UL);
        ASSERT_EQ(var_base_num, 0UL);
        ASSERT_EQ(op_base_num, 0UL);
        ASSERT_EQ(var_wrappers.size(), 6UL);
        ASSERT_EQ(var_bases.size(), 6UL);
        ASSERT_EQ(op_bases.size(), 0UL);
      } else {
        ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2);
        ASSERT_EQ(var_bases.size(), var_base_num + 2);
        ASSERT_EQ(op_bases.size(), op_base_num + 1);
      }

      x = z;  // recurrent usage
    }
  }

  for (auto& var : var_wrappers) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& var : var_bases) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& op : op_bases) {
    ASSERT_TRUE(op.expired());
  }
}

TEST(test_tracer, test_var_op_destruction) {
  TestVarOpDestructionMain(platform::CPUPlace());
#ifdef PADDLE_WITH_CUDA
  TestVarOpDestructionMain(platform::CUDAPlace(0));
#endif
}

J
Jiabin Yang 已提交
502 503 504 505
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
506
USE_OP(mul_grad);
H
hong 已提交
507 508 509
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
USE_OP(elementwise_add);