role_maker.py 36.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

T
tangwei12 已提交
16
from __future__ import print_function
17
import multiprocessing
18
import paddle.fluid as fluid
X
xujiaqi01 已提交
19
import os
20
import sys
21
import time
22

T
tangwei12 已提交
23
__all__ = [
24
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
25
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
26 27
]

28

T
tangwei12 已提交
29 30
class Role:
    WORKER = 1
31 32
    SERVER = 2

D
dongdaxiang 已提交
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class MockBarrier(object):
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


D
dongdaxiang 已提交
69
class RoleMakerBase(object):
70 71 72 73 74 75 76
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
77
    def __init__(self):
T
tangwei12 已提交
78 79
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
80
        self._role_is_generated = False
T
tangwei12 已提交
81 82
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
83

T
tangwei12 已提交
84
    def is_worker(self):
85 86 87
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
88 89
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
90
    def is_server(self):
91 92 93
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
94 95
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
96
    def is_first_worker(self):
97
        """
T
tangwei12 已提交
98 99 100 101
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
102
        """
T
tangwei12 已提交
103
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
104

105 106 107 108 109 110 111 112 113
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
114
    def worker_index(self):
115
        """
T
tangwei12 已提交
116 117 118 119
        Get current worker id.

        Returns:
            int: node id
120
        """
T
tangwei12 已提交
121
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
122

T
tangwei12 已提交
123
    def server_index(self):
124
        """
T
tangwei12 已提交
125 126 127 128
        Get current server id.

        Returns:
            int: node id
129
        """
T
tangwei12 已提交
130
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
131

T
tangwei12 已提交
132
    def get_trainer_endpoints(self):
133
        """
T
tangwei12 已提交
134
        return trainer endpoints
135
        """
T
tangwei12 已提交
136 137 138 139 140 141 142
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
143

T
tangwei12 已提交
144 145 146 147 148
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
186 187

class MPIRoleMaker(RoleMakerBase):
188 189 190 191 192
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
193
    def __init__(self):
X
xujiaqi01 已提交
194
        """Init."""
X
xujiaqi01 已提交
195
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
196 197
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
198 199
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
200
        self._ips = None
T
tangwei12 已提交
201
        self._ip = None
D
dongdaxiang 已提交
202

203
    def _get_rank(self):
X
xujiaqi01 已提交
204
        """Return rank."""
D
dongdaxiang 已提交
205 206
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
207

208
    def _get_size(self):
X
xujiaqi01 已提交
209
        """Return size."""
D
dongdaxiang 已提交
210 211
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
212

213
    def _all_gather(self, obj):
214 215 216
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
217
        self._barrier_all()
D
dongdaxiang 已提交
218
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
219

X
xjqbest 已提交
220 221 222 223
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
224
        if self.is_worker():
D
dongdaxiang 已提交
225 226
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
227 228
        return None

229
    def _barrier_all(self):
230 231 232
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
233
        self._comm.barrier()
D
dongdaxiang 已提交
234

T
tangwei12 已提交
235 236 237 238
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
239
        self.MPI.Finalize()
T
tangwei12 已提交
240

241
    def _get_ips(self):
242 243 244
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
245 246
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
247
        return self._ips
D
dongdaxiang 已提交
248

T
tangwei12 已提交
249
    def get_local_ip(self):
X
xujiaqi01 已提交
250
        """Return get local ip."""
T
tangwei12 已提交
251 252 253 254 255 256 257 258 259
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
260 261 262


class MPISymetricRoleMaker(MPIRoleMaker):
263 264 265 266 267 268
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
269
    def __init__(self):
X
xujiaqi01 已提交
270
        """Init."""
D
dongdaxiang 已提交
271
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
272 273
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
274
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
275

276
    def _check_role_generation(self):
X
xujiaqi01 已提交
277
        """Check whether role has been generated."""
D
dongdaxiang 已提交
278
        if not self._role_is_generated:
T
tangwei12 已提交
279
            raise NameError("generate_role() should be called first")
280 281
        return True

X
xujiaqi01 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
332
    def is_first_worker(self):
333 334 335 336
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
337
            return self.is_worker() and 0 == self.worker_index()
338
        return False
D
dongdaxiang 已提交
339

G
guru4elephant 已提交
340
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
341 342 343 344 345 346
        """
        get pserver endpoints
        
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

360 361 362
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
363
    def is_worker(self):
364 365 366 367
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
368
            return self._node_type == 1
369
        return False
D
dongdaxiang 已提交
370

T
tangwei12 已提交
371
    def is_server(self):
372 373 374 375
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
376
            return self._node_type == 0
377
        return False
D
dongdaxiang 已提交
378

379
    def _worker_num(self):
380 381 382 383
        """
        return the current number of worker
        """
        if self._check_role_generation():
384
            return self._get_size() / self._proc_per_node
385
        return 0
D
dongdaxiang 已提交
386

387
    def _server_num(self):
388 389 390 391
        """
        return the current number of server
        """
        if self._check_role_generation():
G
guru4elephant 已提交
392 393 394 395
            return self._get_size() / self._proc_per_node
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
396

T
tangwei12 已提交
397
    def worker_index(self):
398 399 400 401
        """
        return the index of worker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
402
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
403 404 405
        else:
            self.generate_role()
            return self._get_size() / 2
D
dongdaxiang 已提交
406

T
tangwei12 已提交
407
    def server_index(self):
408 409 410 411
        """
        return the index of server
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
412
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
413 414 415
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
416

X
xujiaqi01 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

439
    def _barrier_worker(self):
440 441 442 443
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
444
            if self.is_worker():
D
dongdaxiang 已提交
445
                self._node_type_comm.barrier()
G
guru4elephant 已提交
446 447
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
448

449
    def _barrier_server(self):
450 451 452 453
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
454
            if self.is_server():
D
dongdaxiang 已提交
455
                self._node_type_comm.barrier()
G
guru4elephant 已提交
456 457
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
458

T
tangwei12 已提交
459
    def generate_role(self):
460 461 462
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
463
        if not self._role_is_generated:
464
            # TODO(guru4elephant): only allow to be called once
465 466
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
467

D
dongdaxiang 已提交
468 469
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
470
            else:
D
dongdaxiang 已提交
471 472 473
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
474 475
        else:
            raise Exception("You should check role generation first")
476 477


478
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
479 480 481 482 483
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

484
    def __init__(self, is_collective=False):
485
        super(PaddleCloudRoleMaker, self).__init__()
486
        self._role_is_generated = False
487
        self._is_collective = is_collective
488 489

    def generate_role(self):
X
xujiaqi01 已提交
490
        """Generate role."""
491
        if not self._role_is_generated:
492
            if not self._is_collective:
T
tangwei12 已提交
493
                try:
C
Chengmo 已提交
494 495 496 497
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
515 516 517
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
518 519 520 521 522 523 524 525 526 527 528 529
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
530
            else:
531 532 533 534 535 536
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
537 538 539 540
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

541 542
            self._role_is_generated = True

543 544 545 546 547
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

548 549 550
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
551 552 553
        return self._role == Role.WORKER

    def is_server(self):
554 555
        if not self._role_is_generated:
            self.generate_role()
556 557 558
        return self._role == Role.SERVER

    def is_first_worker(self):
559 560
        if not self._role_is_generated:
            self.generate_role()
561 562 563
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
564 565
        if not self._role_is_generated:
            self.generate_role()
566 567 568
        return self._current_id

    def server_index(self):
569 570
        if not self._role_is_generated:
            self.generate_role()
571 572 573
        return self._current_id

    def worker_num(self):
574 575
        if not self._role_is_generated:
            self.generate_role()
576
        return self._trainers_num
577 578


X
xujiaqi01 已提交
579 580 581
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
582 583
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
584 585 586 587 588 589 590 591 592 593 594 595
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
        super(RoleMakerBase, self).__init__()
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
596 597 598 599 600 601 602 603 604 605
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
        ip_port = kwargs.get("http_ip_port", "")
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
606
            self._manager = multiprocessing.Manager()
607 608 609 610
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        self._iface = self.__get_default_iface()
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
626 627 628 629
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
                self._is_barrier_all = int(os.environ[
                    "PADDLE_IS_BARRIER_ALL_ROLE"])
X
xujiaqi01 已提交
630 631 632
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
633 634 635 636 637 638 639
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
640 641 642 643 644 645 646 647 648
                    if sys.version_info >= (3, 8) and sys.platform == 'darwin':
                        self._http_server = multiprocessing.get_context(
                            'fork').Process(
                                target=self.__start_kv_server,
                                args=(self._http_server_d, size_d))
                    else:
                        self._http_server = multiprocessing.Process(
                            target=self.__start_kv_server,
                            args=(self._http_server_d, size_d))
649 650 651 652 653
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
654 655
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
                    gloo.set_timeout_seconds(self._init_timeout_seconds,
                                             self._run_timeout_seconds)
                    if len(self._http_ip_port) != 0:
                        gloo.set_http_store(self._http_ip_port[0],
                                            int(self._http_ip_port[1]),
                                            "trainer")
                    else:
                        gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                            self._hdfs_name, self._hdfs_ugi)
                    gloo.init()
                    self._node_type_comm = gloo
673
                else:
674
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
688
                gloo = fluid.core.Gloo()
689 690 691 692 693 694 695 696 697 698 699 700 701
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
702 703
                self._node_type_comm = gloo

704
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
705
            all_list = worker_endpoints + eplist
706 707 708 709 710 711 712 713 714 715 716 717 718
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
719 720 721 722 723 724 725 726
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
727 728 729 730 731
            if self._http_server is not None:
                # set running status to False
                self._http_server_d["running"] = False
                # wait until child process exits
                self._http_server.join()
X
xujiaqi01 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

984 985 986 987 988 989 990 991 992 993
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
        while http_server_d.get("running",
                                False) and not http_server.shoud_stop():
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
994

995
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
996 997 998 999 1000 1001
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

1002 1003
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
1004 1005 1006
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
1007 1008
        super(UserDefinedRoleMaker, self).__init__()

1009 1010 1011 1012 1013 1014 1015
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1016
        else:
1017 1018 1019 1020 1021 1022
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1023

T
tangwei12 已提交
1024
        if role != Role.WORKER and role != Role.SERVER:
1025 1026 1027 1028
            raise TypeError("role must be as Role")
        else:
            self._role = role

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1042 1043 1044
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1045 1046
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1047 1048
            self._worker_num = worker_num

1049 1050 1051
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1052 1053 1054 1055 1056
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1057

T
tangwei12 已提交
1058 1059
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1060

T
tangwei12 已提交
1061 1062
    def worker_index(self):
        return self._current_id
1063

T
tangwei12 已提交
1064 1065
    def server_index(self):
        return self._current_id
1066 1067 1068

    def worker_num(self):
        return self._worker_num
1069 1070 1071


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1072 1073 1074 1075 1076
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1077 1078 1079
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1095 1096 1097 1098
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1099 1100 1101 1102 1103 1104
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1105 1106 1107 1108
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1109 1110 1111
    def generate_role(self):
        self._role_is_generated = True

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num