pool2d_op.cc 6.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
void DealCeilMode(const nvinfer1::Dims &input_shape, std::vector<int> ksize,
                  std::vector<int> strides, std::vector<int> paddings,
                  nvinfer1::DimsHW *pre_pad, nvinfer1::DimsHW *post_pad,
                  int input_dims) {
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
49 50 51 52 53
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
54 55
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
56
    VLOG(4)
N
nhzlx 已提交
57 58 59
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
N
nhzlx 已提交
60 61
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
N
nhzlx 已提交
62 63 64 65 66
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

    PADDLE_ENFORCE_EQ(input_dims, 3UL);
N
nhzlx 已提交
67

N
nhzlx 已提交
68
    bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
69 70 71 72 73 74 75 76
    std::string pool_type =
        boost::get<std::string>(op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
77
    bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));
78 79 80
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
      adaptive = boost::get<bool>(op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
81

N
nhzlx 已提交
82
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
83 84
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
85
    if (pool_type == "max") {
N
nhzlx 已提交
86
      nv_pool_type = nvinfer1::PoolingType::kMAX;
87
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
88
    } else if (pool_type == "avg") {
N
nhzlx 已提交
89
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
90
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
91 92 93 94
    } else {
      PADDLE_THROW("TensorRT unsupported pooling type!");
    }

N
nhzlx 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
      auto *layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
      PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
N
nhzlx 已提交
112
      if (test_mode) {
N
nhzlx 已提交
113
        engine_->DeclareOutput(output_name);
114
      }
N
nhzlx 已提交
115 116
      return;
    }
117

118
    if (!adaptive && pool_type == "max") {
N
nhzlx 已提交
119 120 121 122
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
123 124
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, "pad layer in poolOp converter could not be created.");
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
      PADDLE_ENFORCE_NOT_NULL(pool_layer, "pool layer could not be created.");
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
150
      }
151 152 153 154 155 156 157
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      PADDLE_ENFORCE_NOT_NULL(plugin->getPluginType(),
                              "The plugin used must not be null");
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
      layer = pool_layer;
158
    }
N
nhzlx 已提交
159 160

    auto output_name = op_desc.Output("Out")[0];
161 162
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);

163
    if (op_desc.HasAttr("enable_int8")) {
164
#if IS_TRT_VERSION_GE(5000)
165 166 167
      CHECK(op_desc.HasAttr("X_scale"));
      float input_scale = boost::get<float>(op_desc.GetAttr("X_scale"));
      engine_->SetTensorDynamicRange(input1, input_scale);
168
#endif
N
nhzlx 已提交
169 170 171 172 173 174 175 176 177 178
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);