sequence2batch.h 5.8 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"

D
dangqingqing 已提交
20 21 22 23
namespace paddle {
namespace operators {
namespace math {

D
dangqingqing 已提交
24 25 26 27 28 29 30 31 32
template <typename Place, typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const platform::DeviceContext& context,
33
                  const framework::LoDTensor& src, const size_t* index,
Y
Yu Yang 已提交
34
                  framework::LoDTensor& dst, bool is_src_index);
D
dangqingqing 已提交
35 36
};

D
dangqingqing 已提交
37 38
template <typename Place, typename T>
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

D
dangqingqing 已提交
53 54 55
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& lod_tensor,
D
dangqingqing 已提交
56 57 58 59 60 61 62 63 64 65 66
                  framework::LoDTensor& batch, bool is_cal_batch_lod,
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
      auto lods = batch.lod();
      PADDLE_ENFORCE_EQ(lods.size(), 2UL);
      PADDLE_ENFORCE_EQ(lods[1].size(), lod_tensor.dims()[1]);
      CopyMatrixRowsFunctor<Place, T> to_batch;
      to_batch(context, lod_tensor, lods[1].data(), batch, true);
      return;
    }

67 68
    auto lods = lod_tensor.lod();
    PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
D
dangqingqing 已提交
69 70 71
    auto lod = lods[0];

    std::vector<SeqInfo> seq_info;
72
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
D
dangqingqing 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

    // calculate the start position of each batch
    // (numBatch equal the maxLength of sequences)
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
88 89 90 91
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
92 93 94 95 96 97 98
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
    // The batch number represents batch size after rearranging the
    // input LodTensor. It is also the maximum length of input sequence.
99 100

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
101 102
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
103

D
dangqingqing 已提交
104
    // batch_lods[0] is the start positions for batch LoDTensor
Y
Yu Yang 已提交
105 106
    int num_batch = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
D
dangqingqing 已提交
107
    // batch_lods[1] is the raw index in the input LoDTensor
108
    auto dims = lod_tensor.dims();
Y
Yu Yang 已提交
109
    batch_lods[1].resize(static_cast<size_t>(dims[0]));
D
dangqingqing 已提交
110

111 112
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
113 114
    batch_starts[0] = 0;
    for (size_t n = 0; n < num_batch; n++) {
Y
Yu Yang 已提交
115
      auto batch_id = static_cast<int>(batch_starts[n]);
D
dangqingqing 已提交
116 117 118 119
      for (size_t i = 0; i < seq_info.size(); ++i) {
        size_t seq_len = seq_info[i].length;
        int start = seq_info[i].start;
        if (n < seq_len) {
D
dangqingqing 已提交
120 121
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
122 123 124 125 126
          batch_id++;
        } else {
          break;
        }
      }
Y
Yu Yang 已提交
127
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
D
dangqingqing 已提交
128
    }
129
    batch.set_lod(batch_lods);
D
dangqingqing 已提交
130 131

    CopyMatrixRowsFunctor<Place, T> to_batch;
132
    to_batch(context, lod_tensor, seq2batch_idx, batch, true);
D
dangqingqing 已提交
133
  }
D
dangqingqing 已提交
134
};
D
dangqingqing 已提交
135 136

template <typename Place, typename T>
137
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
138 139 140
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& batch,
141 142 143 144
                  framework::LoDTensor& lod_tensor) const {
    auto in_lod = batch.lod();
    PADDLE_ENFORCE_EQ(in_lod.size(), 2UL,
                      "The LoD size of input `batch` should be 2.");
145 146 147 148 149
    auto out_lod = lod_tensor.lod()[0];
    auto num = out_lod[out_lod.size() - 1];
    PADDLE_ENFORCE_EQ(num, lod_tensor.dims()[0]);
    PADDLE_ENFORCE_EQ(num, in_lod[1].size());
    PADDLE_ENFORCE_EQ(num, batch.dims()[0]);
150
    CopyMatrixRowsFunctor<Place, T> to_seq;
151
    size_t* index = in_lod[1].data();
152 153
    to_seq(context, batch, index, lod_tensor, false);
  }
D
dangqingqing 已提交
154
};
D
dangqingqing 已提交
155 156 157 158

}  // namespace math
}  // namespace operators
}  // namespace paddle