matmul_op.h 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
M
Markus Kliegl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
M
Markus Kliegl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
M
Markus Kliegl 已提交
14 15

#pragma once
16 17 18
#include <algorithm>
#include <functional>
#include <vector>
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matmul.h"
M
Markus Kliegl 已提交
22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {
namespace matmul_detail {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
using framework::make_ddim;
using framework::vectorize;

Q
QI JUN 已提交
32
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
33 34 35 36 37 38 39 40 41 42
class MatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    Tensor* out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

Q
QI JUN 已提交
43 44 45
    math::MatMulFunctor<DeviceContext, T>()(
        context.template device_context<DeviceContext>(), x, transpose_x, y,
        transpose_y, T(1), out, T(0));
M
Markus Kliegl 已提交
46 47 48 49 50 51
  }
};

template <typename T>
inline Tensor Reshape(const Tensor& input, const DDim& dims) {
  Tensor output;
52
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
53 54 55 56 57 58 59 60 61
  output.Resize(dims);
  return output;
}

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
template <typename T>
Tensor CombineBatchAndM(const Tensor& input) {
  Tensor output;
62
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
63 64 65 66 67 68 69 70 71 72 73
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    std::vector<int64_t> out_dims = {in_dims[0] * in_dims[1], in_dims[2]};
    output.Resize(make_ddim(out_dims));
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
Q
QI JUN 已提交
74 75
template <typename DeviceContext, typename T>
Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) {
M
Markus Kliegl 已提交
76 77 78
  Tensor output;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
79
    output.Resize({in_dims[1], in_dims[0], in_dims[2]});
M
Markus Kliegl 已提交
80
    output.mutable_data<T>(context.GetPlace());
81
    std::vector<int> axis = {1, 0, 2};
Q
QI JUN 已提交
82 83
    math::Transpose<DeviceContext, T, 3> trans;
    trans(context, input, &output, axis);
M
Markus Kliegl 已提交
84
    std::vector<int64_t> out_dims = {in_dims[1], in_dims[0] * in_dims[2]};
85
    output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
86
  } else {
87
    output.ShareDataWith(input);
M
Markus Kliegl 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  }
  return output;
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
Q
QI JUN 已提交
117
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    const Tensor& dout = *context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* dx = context.Output<Tensor>(framework::GradVarName("X"));
    Tensor* dy = context.Output<Tensor>(framework::GradVarName("Y"));
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    std::vector<int64_t> x_dims = vectorize(x.dims());
    std::vector<int64_t> y_dims = vectorize(y.dims());

    // If X is a vector, reshape it to a matrix.
    if (x_dims.size() == 1) {
      x_dims.insert(x_dims.begin(), 1);
    }

    // If Y is a vector, reshape it to a matrix.
    if (y_dims.size() == 1) {
      y_dims.push_back(1);
    }

C
chengduoZH 已提交
142
    int batch_count = 0;
C
chengduoZH 已提交
143
    // The first rank-2 dimensions are accumulated on the batch_count, and the
C
chengduoZH 已提交
144
    // last two dimensions are used for matrix multiplication.
C
chengduoZH 已提交
145 146 147 148
    if (x_dims.size() > 3) {
      batch_count = accumulate(x_dims.begin(), x_dims.end() - 2, 1,
                               std::multiplies<int>());
    }
M
Markus Kliegl 已提交
149 150 151 152 153 154 155 156 157 158 159 160
    // Fix the dOut dimensions.
    int M = 0, N = 0, batchCountX = 0, batchCountY = 0;

    switch (x_dims.size()) {
      case 2:
        M = transpose_x ? x_dims[1] : x_dims[0];
        break;
      case 3:
        batchCountX = x_dims[0];
        M = transpose_x ? x_dims[2] : x_dims[1];
        break;
      default:
C
chengduoZH 已提交
161
        batchCountX = batch_count;
C
chengduoZH 已提交
162 163
        size_t mat_s = x_dims.size() - 2;
        M = transpose_x ? x_dims[mat_s + 1] : x_dims[mat_s];
M
Markus Kliegl 已提交
164 165 166 167 168 169 170 171 172 173 174
    }

    switch (y_dims.size()) {
      case 2:
        N = transpose_y ? y_dims[0] : y_dims[1];
        break;
      case 3:
        batchCountY = y_dims[0];
        N = transpose_y ? y_dims[1] : y_dims[2];
        break;
      default:
C
chengduoZH 已提交
175
        batchCountY = batch_count;
C
chengduoZH 已提交
176 177
        size_t mat_s = y_dims.size() - 2;
        N = transpose_y ? y_dims[mat_s] : y_dims[mat_s + 1];
M
Markus Kliegl 已提交
178 179 180 181 182 183 184 185 186 187
    }
    if (batchCountX && batchCountY) {
      PADDLE_ENFORCE_EQ(
          batchCountX, batchCountY,
          "When Input(X) and Input(Y) are both three dimensional, they "
          "must have the same batch dimension.");
    }
    int batchCount = std::max(batchCountX, batchCountY);
    std::vector<int64_t> dout_dims = {M, N};
    if (batchCount) {
C
chengduoZH 已提交
188 189 190 191 192
      if (x_dims.size() > 3) {
        dout_dims.insert(dout_dims.begin(), x_dims.begin(), x_dims.end() - 2);
      } else {
        dout_dims.insert(dout_dims.begin(), batchCount);
      }
M
Markus Kliegl 已提交
193 194 195 196 197
    }
    Tensor X = Reshape<T>(x, make_ddim(x_dims));
    Tensor Y = Reshape<T>(y, make_ddim(y_dims));
    Tensor dOut = Reshape<T>(dout, make_ddim(dout_dims));

Q
QI JUN 已提交
198
    auto& dev_ctx = context.template device_context<DeviceContext>();
M
Markus Kliegl 已提交
199 200 201 202
    if (dx) {
      dx->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dX =
          (x_dims.size() == 2 && y_dims.size() == 3)
Q
QI JUN 已提交
203
              ? CombineBatchAndN<DeviceContext, T>(dev_ctx, dOut)
M
Markus Kliegl 已提交
204 205 206
              : dOut;
      if (x_dims.size() == 2 && y_dims.size() == 3) {
        Y = transpose_y ? CombineBatchAndM<T>(Y)
Q
QI JUN 已提交
207
                        : CombineBatchAndN<DeviceContext, T>(dev_ctx, Y);
M
Markus Kliegl 已提交
208 209
      }
      if (transpose_x) {
Q
QI JUN 已提交
210 211
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0));
M
Markus Kliegl 已提交
212
      } else {
Q
QI JUN 已提交
213 214
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0));
M
Markus Kliegl 已提交
215 216 217 218 219 220 221 222 223
      }
    }

    if (dy) {
      dy->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3)
                                      ? CombineBatchAndM<T>(dOut)
                                      : dOut;
      if (y_dims.size() == 2 && x_dims.size() == 3) {
Q
QI JUN 已提交
224
        X = transpose_x ? CombineBatchAndN<DeviceContext, T>(dev_ctx, X)
M
Markus Kliegl 已提交
225 226 227 228
                        : CombineBatchAndM<T>(X);
        dOut = CombineBatchAndM<T>(dOut);
      }
      if (transpose_y) {
Q
QI JUN 已提交
229 230
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0));
M
Markus Kliegl 已提交
231
      } else {
Q
QI JUN 已提交
232 233
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0));
M
Markus Kliegl 已提交
234 235 236 237 238 239 240 241 242 243 244
      }
    }
  }
};
}  // namespace matmul_detail

using matmul_detail::MatMulKernel;
using matmul_detail::MatMulGradKernel;

}  // namespace operators
}  // namespace paddle