io.py 62.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

H
hong 已提交
24 25
import numpy as np

26 27 28
import paddle
import paddle.reader
from paddle.reader import *
29
from paddle.fluid import layers
H
hong 已提交
30
from paddle.fluid.executor import Executor, global_scope
31
from paddle.fluid.evaluator import Evaluator
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
33
from paddle.fluid.compiler import CompiledProgram
34
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
35 36
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
37
from . import core
38
from .. import compat as cpt
39

40 41
batch = paddle.batch

42
__all__ = [
T
tangwei12 已提交
43
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
H
hong 已提交
44 45
    'load_persistables', 'save_inference_model', 'load_inference_model',
    'batch', 'save', 'load'
46
] + reader.__all__ + paddle.reader.__all__
47

48 49
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
50

51 52

def is_parameter(var):
F
fengjiayi 已提交
53 54
    """
    Check whether the given variable is an instance of Parameter.
55 56

    Args:
F
fengjiayi 已提交
57
        var(Variable): The variable to be checked.
58 59

    Returns:
F
fengjiayi 已提交
60 61 62 63 64 65
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

66
            import paddle.fluid as fluid
F
fengjiayi 已提交
67 68
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
69
    """
70 71 72 73
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

87
            import paddle.fluid as fluid
88
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
89 90
            res = fluid.io.is_persistable(param)
    """
91
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
92 93
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
94
        return False
95 96 97
    return var.persistable


H
hong 已提交
98 99 100 101
def is_belong_to_optimizer(var):
    return var.belong_to_optimizer


102 103
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
119 120


C
chengduo 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


135 136 137 138 139
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
140
              filename=None):
141
    """
142
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
143

144 145 146
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
147

148 149 150
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
151
    use `filename` to specify it.
152

F
fengjiayi 已提交
153 154
    Args:
        executor(Executor): The executor to run for saving variables.
155 156
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
157
                                    If it is None, the default main program will
F
fengjiayi 已提交
158 159
                                    be used automatically.
                                    Default: None
160 161 162 163 164 165 166 167
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
168 169 170 171 172 173 174 175 176 177

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

178
            import paddle.fluid as fluid
179

180 181 182 183 184 185 186 187 188 189 190
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
191

192
            # The first usage: use `vars` to set the saved variables.
193 194
            var_list = [w, b]
            path = "./my_paddle_vars"
195
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
196 197 198 199 200 201 202 203 204 205
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
206
    """
L
lujun 已提交
207
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
208
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
209

210 211 212
    if vars is None:
        save_vars(
            executor,
213
            main_program=main_program,
L
lujun 已提交
214
            dirname=save_dirname,
215
            vars=list(filter(predicate, main_program.list_vars())),
216
            filename=filename)
217
    else:
218 219 220 221 222 223 224
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

225 226
        save_program = Program()
        save_block = save_program.global_block()
227 228

        save_var_map = {}
229
        for each_var in vars:
230 231 232
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
233
            new_var = _clone_var_in_block_(save_block, each_var)
234
            if filename is None:
235 236
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
237 238 239 240
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
241
                    attrs={'file_path': save_file_path})
242 243 244
            else:
                save_var_map[new_var.name] = new_var

245
        if filename is not None:
246 247 248 249
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

250
            save_block.append_op(
251 252
                type='save_combine',
                inputs={'X': save_var_list},
253
                outputs={},
L
lujun 已提交
254
                attrs={'file_path': os.path.join(save_dirname, filename)})
255

256 257 258
        executor.run(save_program)


259
def save_params(executor, dirname, main_program=None, filename=None):
260
    """
261 262 263
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
264

265 266 267
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
268 269
    the file name.

270 271 272 273 274 275 276 277 278 279
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
280 281

    Args:
282 283
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
284
        dirname(str): The saving directory path.
285 286 287 288 289 290 291 292 293 294
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
295 296 297 298 299 300 301

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
302
            import paddle.fluid as fluid
303 304 305 306 307 308 309 310 311 312
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
313
            exe = fluid.Executor(fluid.CPUPlace())
314 315 316 317
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
318 319 320 321
    """
    save_vars(
        executor,
        dirname=dirname,
322
        main_program=main_program,
323
        vars=None,
324
        predicate=is_parameter,
325
        filename=filename)
326 327


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

350
            import paddle.fluid as fluid
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
475
        raise TypeError("'main_program' should be an instance of Program.")
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


509
def save_persistables(executor, dirname, main_program=None, filename=None):
510
    """
511 512 513 514 515
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
516

517
    The :code:`dirname` is used to specify the folder where persistable variables
518
    are going to be saved. If you would like to save variables in separate
519 520
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
521 522 523

    Args:
        executor(Executor): The executor to run for saving persistable variables.
524 525 526 527 528 529 530 531 532 533 534 535
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
536 537 538 539 540 541 542

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
543
            import paddle.fluid as fluid
544 545 546 547 548 549 550 551 552 553
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
554
            exe = fluid.Executor(fluid.CPUPlace())
555 556 557 558 559
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
560
    """
561 562 563 564 565 566 567 568 569 570 571
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
572 573


574 575 576 577 578
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
579
              filename=None):
580
    """
581
    This API loads variables from files by executor.
F
fengjiayi 已提交
582

583 584 585 586
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
587

588
    The `dirname` is used to specify the folder where to load variables.
589
    If variables were saved in separate files in the folder `dirname`,
590
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
591
    use `filename` to specify it.
592

F
fengjiayi 已提交
593 594
    Args:
        executor(Executor): The executor to run for loading variables.
595 596
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
597
                                    If it is None, the default main program will
F
fengjiayi 已提交
598 599
                                    be used automatically.
                                    Default: None
600
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
601
                                   Default: None
602 603 604 605 606 607
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
608 609 610 611 612 613 614 615 616 617

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

618
            import paddle.fluid as fluid
619

620 621 622 623 624 625 626 627 628 629 630
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
631

632 633 634 635 636 637 638 639 640 641 642
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
643
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
644 645 646
            def name_has_fc(var):
                res = "fc" in var.name
                return res
647 648 649
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
650
                               vars=None, predicate=name_has_fc)
651 652
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
653

654
    """
L
lujun 已提交
655
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
656

657
    if vars is None:
658
        if main_program is None:
Y
Yu Yang 已提交
659
            main_program = default_main_program()
660
        if not isinstance(main_program, Program):
661 662 663 664
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
665
            dirname=load_dirname,
T
tangwei12 已提交
666
            main_program=main_program,
667
            vars=list(filter(predicate, main_program.list_vars())),
668
            filename=filename)
669 670 671
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
672

673 674
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
675

676 677 678
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

H
hong 已提交
679 680
        #save origin param shape
        orig_para_shape = {}
681
        load_var_map = {}
682 683
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
684 685
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
686 687

            if isinstance(each_var, Parameter):
688 689
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
690
            new_var = _clone_var_in_block_(load_block, each_var)
691
            if filename is None:
692 693 694 695
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
696 697 698
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
699 700 701
            else:
                load_var_map[new_var.name] = new_var

702
        if filename is not None:
703 704 705 706
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

707
            load_block.append_op(
708
                type='load_combine',
709
                inputs={},
710
                outputs={"Out": load_var_list},
L
lujun 已提交
711
                attrs={'file_path': os.path.join(load_dirname, filename)})
712 713
        executor.run(load_prog)

H
hong 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        #check var shape
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

729

730
def load_params(executor, dirname, main_program=None, filename=None):
731
    """
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
751 752

    Args:
753 754
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
755
        dirname(str): The directory path.
756 757 758 759 760 761 762 763
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
764 765 766 767 768 769 770

    Returns:
        None

    Examples:
        .. code-block:: python

771
            import paddle.fluid as fluid
772

F
fengjiayi 已提交
773 774 775
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
776
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
777
                                main_program=None)
778 779
    """
    load_vars(
780 781 782
        executor,
        dirname=dirname,
        main_program=main_program,
783
        predicate=is_parameter,
784
        filename=filename)
785 786


787
def load_persistables(executor, dirname, main_program=None, filename=None):
788
    """
789 790 791
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
792

793 794 795 796
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
797 798

    Args:
799 800
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
801
        dirname(str): The directory path.
802 803 804 805 806 807 808 809
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
810 811 812 813 814 815 816

    Returns:
        None

    Examples:
        .. code-block:: python

817
            import paddle.fluid as fluid
818

F
fengjiayi 已提交
819 820 821
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
822
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
823
                                       main_program=None)
824
    """
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

856
            import paddle.fluid as fluid
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
904 905 906 907
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
942
        raise TypeError("'main_program' should be an instance of Program.")
943 944 945 946 947 948 949 950 951 952 953 954 955 956

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
957 958


959 960 961
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
962 963 964
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
965 966
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
967 968 969
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
970

971
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
972
        out = global_block.var(name)
W
Wu Yi 已提交
973
        global_block._prepend_op(
K
Kexin Zhao 已提交
974 975
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
976
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
977 978 979
            attrs={'col': i})


980 981 982
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
983 984
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
985 986 987
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
988

989
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
990 991 992 993 994 995 996
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


997 998 999 1000
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1001
                         main_program=None,
1002
                         model_filename=None,
1003
                         params_filename=None,
T
tangwei12 已提交
1004 1005
                         export_for_deployment=True,
                         program_only=False):
1006
    """
F
fengjiayi 已提交
1007
    Prune the given `main_program` to build a new program especially for inference,
1008
    and then save it and all related parameters to given `dirname` .
1009
    If you just want to save parameters of your trained model, please use the
1010 1011
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1012

1013 1014 1015 1016 1017
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1018 1019 1020

    Args:
        dirname(str): The directory path to save the inference model.
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1037 1038 1039 1040 1041
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
1042 1043 1044 1045
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1046

F
fengjiayi 已提交
1047
    Returns:
1048 1049 1050 1051
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1052 1053

    Raises:
1054 1055
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1056 1057 1058

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1059

1060 1061
            import paddle.fluid as fluid

F
fengjiayi 已提交
1062 1063
            path = "./infer_model"

1064
            # User defined network, here a softmax regresssion example
1065 1066
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

1084 1085 1086
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1087
            # and parameters are going to be saved in separate files under folder
1088
            # "./infer_model".
1089 1090

    """
M
minqiyang 已提交
1091
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1092
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1093
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1094
        if len(feeded_var_names) > 0:
1095
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1096
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1097
                    isinstance(name, six.string_types)
1098
                    for name in feeded_var_names)):
M
minqiyang 已提交
1099
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1100 1101

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1102
        target_vars = [target_vars]
X
Xin Pan 已提交
1103
    elif export_for_deployment:
1104 1105
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1106 1107
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1108
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1119 1120 1121 1122 1123
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1124
        for i, var in enumerate(target_vars):
1125
            if isinstance(var, Variable):
F
flame 已提交
1126 1127 1128
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1129
        target_vars = uniq_target_vars
F
flame 已提交
1130
    target_var_name_list = [var.name for var in target_vars]
1131

1132
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1133
    save_dirname = dirname
1134
    try:
L
lujun 已提交
1135 1136
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1137 1138 1139 1140
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1141 1142 1143 1144
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1145
    model_basename = os.path.join(save_dirname, model_basename)
1146

X
Xin Pan 已提交
1147 1148 1149 1150
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1151 1152 1153

    origin_program = main_program.clone()

X
Xin Pan 已提交
1154
    if export_for_deployment:
X
Xin Pan 已提交
1155 1156
        main_program = main_program.clone()
        global_block = main_program.global_block()
1157
        need_to_remove_op_index = []
X
Xin Pan 已提交
1158 1159 1160
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1161 1162 1163 1164 1165
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1166
        main_program.desc.flush()
X
Xin Pan 已提交
1167

1168 1169
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1170
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1171 1172
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1173 1174 1175
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1176 1177
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1178 1179
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1180 1181 1182
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1183 1184
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1185

T
tangwei12 已提交
1186 1187 1188 1189 1190 1191
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1192 1193
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1194 1195
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1196

L
lujun 已提交
1197
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1198
    return target_var_name_list
X
fix  
Xin Pan 已提交
1199

1200

1201 1202 1203
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1204 1205
                         params_filename=None,
                         pserver_endpoints=None):
1206
    """
1207 1208 1209
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1210
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1211

F
fengjiayi 已提交
1212
    Args:
1213
        dirname(str): The given directory path.
F
fengjiayi 已提交
1214
        executor(Executor): The executor to run for loading inference model.
1215 1216
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1217
                                  If it is None, the default filename
1218 1219 1220
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1221 1222 1223
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1224 1225 1226 1227 1228 1229
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1230
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1231 1232

    Returns:
1233
        list: The return of this API is a list with three elements:
1234
        (program, feed_target_names, fetch_targets). The `program` is a
1235 1236 1237 1238 1239
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1240 1241 1242 1243 1244 1245 1246

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1247 1248
            import paddle.fluid as fluid
            import numpy as np
1249 1250

            # Build the model
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1262 1263

            # Save the inference model
F
fengjiayi 已提交
1264
            path = "./infer_model"
1265 1266
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1267 1268 1269

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1270 1271
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1272
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1273 1274 1275 1276
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1277 1278 1279
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1280
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1281
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1282 1283
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1284
                                              pserver_endpoints=endpoints))
1285

1286
            # In this example, the inference program was saved in the file
1287
            # "./infer_model/__model__" and parameters were saved in
1288 1289 1290 1291
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1292
    """
L
lujun 已提交
1293 1294
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1295 1296
        raise ValueError("There is no directory named '%s'", dirname)

1297 1298
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1299
    else:
1300
        model_filename = "__model__"
L
lujun 已提交
1301
    model_filename = os.path.join(load_dirname, model_filename)
1302 1303 1304

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1305

1306
    with open(model_filename, "rb") as f:
1307 1308
        program_desc_str = f.read()

1309
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1310
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1311 1312 1313
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1314
    load_persistables(executor, load_dirname, program, params_filename)
1315

T
tangwei12 已提交
1316
    if pserver_endpoints:
T
tangwei12 已提交
1317
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1318

1319 1320
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1321 1322 1323 1324 1325
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1326 1327


T
tangwei12 已提交
1328 1329 1330
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1331 1332
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1333
    program._sync_with_cpp()
T
tangwei12 已提交
1334
    return program
T
tangwei12 已提交
1335 1336


X
xuwei06 已提交
1337 1338
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1350

F
fengjiayi 已提交
1351 1352
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1353

1354
            import paddle.fluid as fluid
F
fengjiayi 已提交
1355 1356 1357
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1358

X
xuwei06 已提交
1359
    """
X
xuwei06 已提交
1360 1361
    assert is_parameter(para)

X
xuwei06 已提交
1362 1363 1364 1365 1366 1367 1368 1369
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1370
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1371

F
fengjiayi 已提交
1372 1373 1374 1375 1376 1377 1378
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1379

F
fengjiayi 已提交
1380 1381
    Returns:
        numpy.array: The parameter's values.
1382

F
fengjiayi 已提交
1383 1384 1385 1386 1387
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1388

F
fengjiayi 已提交
1389 1390 1391
    Examples:
        .. code-block:: python

1392
            import paddle.fluid as fluid
F
fengjiayi 已提交
1393 1394
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1395 1396
    """
    if program is None:
Y
Yu Yang 已提交
1397
        program = default_main_program()
X
xuwei06 已提交
1398 1399
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
            "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"

    parameter_list = list(filter(is_parameter, program.list_vars()))
    paddle.fluid.core._save_static_dict(model_path + ".pdparams",
                                        parameter_list, global_scope())

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    paddle.fluid.core._save_static_dict(model_path + ".pdopt",
                                        optimizer_var_list, global_scope())

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


def load(program, model_path):
    """
    This function filter out parameters and optimizer information from program, and then get corresponding value from file.
    An exception will throw if shape or dtype of the parameters is not match between program and loaded file.

    NOTICE: This function MUST called after run start_up_program

    Args: 
        program: The program to be load
        model_path: The file prefix store the program

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
            "Parameter file [{}] not exits".format( parameter_file_name)

    parameter_list = list(filter(is_parameter, program.list_vars()))
    paddle.fluid.core._load_static_dict(parameter_file_name, parameter_list,
                                        global_scope())

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
        opt_file_name = model_path + ".pdopt"
        assert os.path.exists(opt_file_name), \
                "Optimizer file [{}] not exits".format( opt_file_name)
        paddle.fluid.core._load_static_dict(opt_file_name, optimizer_var_list,
                                            global_scope())