executor.cc 18.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
34
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
37

38
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
39
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
40
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
41 42
#endif

D
dzhwinter 已提交
43
DECLARE_bool(benchmark);
44
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
45 46 47

namespace paddle {
namespace framework {
X
Xin Pan 已提交
48 49 50 51 52
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
53

Q
Qiao Longfei 已提交
54
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
55 56 57 58 59 60 61 62
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
63
  }
S
sneaxiy 已提交
64
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
65
}
Y
Yu Yang 已提交
66

Q
Qiao Longfei 已提交
67
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
68
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
69
}
Y
Yu Yang 已提交
70

D
dzhwinter 已提交
71
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
72

Y
Yancey1989 已提交
73
void Executor::Close() {
W
Wu Yi 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
75 76
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
77 78 79
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
80
#endif
Y
Yancey1989 已提交
81
}
W
Wu Yi 已提交
82

L
Liu Yiqun 已提交
83 84 85
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
100
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
101 102
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
103 104
      } else {
        auto* ptr = scope->Var(var->Name());
105
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
106 107
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
108 109 110 111 112
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
113
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
114 115
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
116 117 118 119
    }
  }
}

D
dongdaxiang 已提交
120
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
X
xujiaqi01 已提交
121
                              Dataset* dataset,
D
dongdaxiang 已提交
122
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  google::protobuf::TextFormat::ParseFromString(trainer_desc_str,
                                                &trainer_desc);
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
135
  trainer->SetScope(scope);
D
dongdaxiang 已提交
136 137 138 139 140 141 142 143 144 145 146
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  VLOG(3) << "Drop current scope kids";
D
dongdaxiang 已提交
147
  scope->DropKids();
D
dongdaxiang 已提交
148 149
  return;
}
D
dongdaxiang 已提交
150

Y
Yu Yang 已提交
151
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
152 153 154
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
155
  platform::RecordBlock b(block_id);
156
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
157
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
158
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
159 160
}

161 162 163 164 165 166 167
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
168
    const BlockDesc& block,
L
Liu Yiqun 已提交
169
    const std::map<std::string, const LoDTensor*>& feed_targets,
170 171
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
172
  for (auto* op : block.AllOps()) {
173 174
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
175
      // The input variable's name of feed_op should be feed_holder_name.
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

191
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
192
      // When feed operator are present, so should be feed_holder.
193 194 195 196 197 198 199
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
200 201 202 203 204 205 206 207 208 209 210 211
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
212 213
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
214 215
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
216
  for (auto* op : block.AllOps()) {
217 218
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
219
      // The output variable's name of fetch_op should be fetch_holder_name.
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

235
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
236
      // When fetch operator are present, so should be fetch_holder.
237 238 239 240 241 242 243
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
244 245 246 247 248 249
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
250 251
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
252 253
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
254
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
255
  platform::RecordBlock b(kProgramId);
256
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
257
  bool has_feed_ops =
258
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
259
  bool has_fetch_ops =
260
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
261 262

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
263
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
264
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
265 266
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
267
  }
268 269
  auto* global_block = copy_program->MutableBlock(0);

270
  if (!has_feed_ops) {
271 272
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
273
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
274 275 276
    feed_holder->SetPersistable(true);

    int i = 0;
277
    for (auto& feed_target : (*feed_targets)) {
278
      std::string var_name = feed_target.first;
M
minqiyang 已提交
279
      VLOG(3) << "feed target's name: " << var_name;
280 281 282 283 284 285 286 287 288 289 290 291 292

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

293
  if (!has_fetch_ops) {
294 295
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
296
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
297 298 299
    fetch_holder->SetPersistable(true);

    int i = 0;
300
    for (auto& fetch_target : (*fetch_targets)) {
301
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
302
      VLOG(3) << "fetch target's name: " << var_name;
303 304 305 306 307 308 309 310 311 312 313 314 315

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

316
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
317 318 319
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
320 321
}

Q
Qiao Longfei 已提交
322
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
323
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
324
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
325 326
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
327 328 329 330 331
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
332 333 334 335 336 337
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
338
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
339
  return ctx;
Y
Yu Yang 已提交
340 341
}

T
refine  
typhoonzero 已提交
342
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
343
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
344 345
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
346 347 348 349
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
350
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
351
  size_t idx = 0;
T
typhoonzero 已提交
352 353
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
354
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
355 356 357 358
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
359 360 361 362 363
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
364
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
365
    ++idx;
T
typhoonzero 已提交
366 367 368 369
  }
  return result;
}

Y
Yu Yang 已提交
370
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
371 372
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
373
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
374 375 376 377
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
378 379
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
380
  }
Y
Yu Yang 已提交
381

S
sneaxiy 已提交
382
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
383
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
384 385 386
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
387 388
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
389
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
390
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
391 392
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
393
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
394 395 396
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
397
#endif
S
sneaxiy 已提交
398 399
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
400 401 402
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
403 404
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
405 406 407
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
408 409
  }

Y
Yu Yang 已提交
410
  for (auto& op : ctx->ops_) {
411
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
412

S
fix bug  
sneaxiy 已提交
413
    if (gc) {
S
sneaxiy 已提交
414
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
415
    }
Y
Yu Yang 已提交
416
  }
S
sneaxiy 已提交
417

S
fix bug  
sneaxiy 已提交
418
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
419

Q
qiaolongfei 已提交
420
  if (local_scope != scope) {
Y
Yu Yang 已提交
421
    scope->DeleteScope(local_scope);
422
  } else {
Q
qiaolongfei 已提交
423 424 425 426 427
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
428 429
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
430 431
      scope->DropKids();
    }
Y
Yu Yang 已提交
432 433 434
  }
}

435 436
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
437
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
438 439 440
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
441 442
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

443
  PADDLE_ENFORCE(
444
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
445 446
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
447
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
448 449
      "Program in the prepared context should has fetch_ops.");

450 451 452 453 454
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
455 456
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
457 458 459
    }
  }

W
Wu Yi 已提交
460
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
461 462 463 464 465 466

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
467
      *(*fetch_targets)[fetch_target_name] =
468 469 470 471 472
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

473 474
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
475
  VLOG(3) << "use_mkldnn=True";
476 477 478 479 480 481 482 483
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
484 485 486
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
487 488
#endif
}
Q
qijun 已提交
489 490
}  // namespace framework
}  // namespace paddle