compiler.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
S
sneaxiy 已提交
21
from .framework import cuda_places, cpu_places
22 23 24

from . import core

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31 32 33 34 35 36 37 38


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


39 40
def _is_pserver_mode(main_program):
    main = main_program if main_program \
C
chengduo 已提交
41
        else framework.default_main_program()
42 43 44 45 46 47
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


X
polish  
Xin Pan 已提交
48
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
49
    """
X
Xin Pan 已提交
50
    Compiles to Graph for execution.
X
polish  
Xin Pan 已提交
51

X
Xin Pan 已提交
52 53 54 55
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
56 57 58 59
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
60 61
      * Transform the program for optimized inference or distributed
        training. **Note that: this part is not finished.**
X
polish  
Xin Pan 已提交
62 63

    Example:
X
Xin Pan 已提交
64
        .. code-block:: python
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          place = fluid.CUDAPlace(0) # fluid.CPUPlace()
          exe = fluid.Executor(place)

          data = fluid.layers.data(name='X', shape=[1], dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          loss = fluid.layers.mean(hidden)
          fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          fluid.default_startup_program().random_seed=1
          exe.run(fluid.default_startup_program())
          compiled_prog = compiler.CompiledProgram(
                   fluid.default_main_program())

          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
88 89

    Args:
X
Xin Pan 已提交
90 91 92 93 94
        program_or_graph (Graph|Program): If it's Program, it will be first
            lowered to a graph for further optimizations. If it's a graph
            (potentially optimized before), it will be directly used for
            further optimizations. Note: graph is only supported when compiled
            with with_data_parallel option.
X
polish  
Xin Pan 已提交
95 96
    """

X
Xin Pan 已提交
97 98 99
    def __init__(self, program_or_graph):
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
100
            # don't not create a new program here.
X
Xin Pan 已提交
101 102 103 104 105 106 107 108
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

X
polish  
Xin Pan 已提交
109 110 111
        self._scope = None
        self._place = None
        self._executor = None
112 113
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
114
        self._is_inference = False
115

X
Xin Pan 已提交
116 117 118 119
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
120 121
                           share_vars_from=None,
                           places=None):
X
Xin Pan 已提交
122 123
        """Configs the program to run in data parallel way.

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        Example:
            .. code-block:: python

              import paddle.fluid as fluid
              import paddle.fluid.compiler as compiler
              import numpy
              import os

              use_cuda = True
              place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

              # NOTE: If you use CPU to run the program, you need
              # to specify the CPU_NUM, otherwise, fluid will use
              # all the number of the logic core as the CPU_NUM,
              # in that case, the batch size of the input should be
              # greater than CPU_NUM, if not, the process will be
              # failed by an exception.
              if not use_cuda:
                  os.environ['CPU_NUM'] = str(2)

              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

              fluid.default_startup_program().random_seed=1
              exe.run(fluid.default_startup_program())
              compiled_prog = compiler.CompiledProgram(
                       fluid.default_main_program()).with_data_parallel(
                                loss_name=loss.name)

              x = numpy.random.random(size=(10, 1)).astype('float32')
              loss_data, = exe.run(compiled_prog,
                                   feed={"X": x},
                                   fetch_list=[loss.name])

X
Xin Pan 已提交
162 163 164 165 166 167 168 169 170 171 172 173
        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
S
sneaxiy 已提交
174
            share_vars_from(CompiledProgram): If provided, this CompiledProgram
X
Xin Pan 已提交
175 176 177
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
S
sneaxiy 已提交
178
            places(list(CUDAPlace)|list(CPUPlace)|None): If provided, only compile
S
sneaxiy 已提交
179 180 181
                program in the given places. Otherwise, the places used when compiled 
                is determined by the Executor, and the places used are controlled 
                by environment variables: FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES
S
sneaxiy 已提交
182 183 184
                if using GPU; or CPU_NUM if using CPU. For example, if you want to 
                run on GPU 0 and 1, set places=[fluid.CUDAPlace(0), fluid.CUDAPlace(1)].
                If you want to run on 2 CPU cores, set places=[fluid.CPUPlace()]*2.  
S
sneaxiy 已提交
185

X
Xin Pan 已提交
186 187 188
        Returns:
            self
        """
189
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
190
        assert not self._is_inference, "Cannot compile both data parallel and inference"
191 192 193 194
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
195
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
196 197 198 199
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
S
sneaxiy 已提交
200 201 202
        if places is not None:
            if not isinstance(places, (list, tuple)):
                places = [places]
S
sneaxiy 已提交
203
            self._places = places
S
sneaxiy 已提交
204 205
        else:
            self._places = None
S
sneaxiy 已提交
206
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)
207 208
        return self

F
flame 已提交
209 210 211 212 213 214 215 216
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
217
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
218 219
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
220 221 222 223 224 225 226
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
227

F
flame 已提交
228
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
229 230
        raise NotImplementedError()

231
    def _compile_data_parallel(self, use_cuda=False, scope=None):
X
polish  
Xin Pan 已提交
232
        if self._share_vars_from:
233
            if scope:
X
polish  
Xin Pan 已提交
234 235 236 237 238 239 240 241 242 243
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
244
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
245
            self._local_scopes = []
246

S
sneaxiy 已提交
247
        self._exec_strategy.use_cuda = use_cuda
S
sneaxiy 已提交
248 249 250
        has_set_place = (self._places is not None)
        if has_set_place:
            for p in self._places:
S
sneaxiy 已提交
251
                assert p._type() == self._place._type(), \
S
sneaxiy 已提交
252
                    "Place type not match. You may set the wrong type of places"
253
        else:
S
sneaxiy 已提交
254
            self._places = cuda_places(
S
sneaxiy 已提交
255
            ) if self._exec_strategy.use_cuda else cpu_places()
256 257 258 259 260 261 262 263
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
S
sneaxiy 已提交
264
                self._exec_strategy.num_threads = len(self._places) * 2
265

X
Xin Pan 已提交
266 267
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
268
        # TODO(gongwb): let user to set them once.
X
Xin Pan 已提交
269 270 271
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
272

273
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
274 275 276
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

277 278
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
279 280
            self._build_strategy.use_hierarchical_allreduce = self._program._use_hierarchical_allreduce
            self._build_strategy.hierarchical_allreduce_inter_nranks = self._program._hierarchical_allreduce_inter_nranks
281

Q
qingqing01 已提交
282 283 284
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

X
Xin Pan 已提交
285
        self._persistable_vars = []
Z
Zhen Wang 已提交
286 287 288 289
        for node in self._graph.nodes():
            if node.is_var() and node.var() is not None and node.var().persistable() and \
                    node.var().type() != core.VarDesc.VarType.RAW:
                self._persistable_vars.append(cpt.to_text(node.name()))
290 291

        places = list(map(_place_obj, self._places))
Y
Yan Xu 已提交
292 293 294 295 296 297 298 299 300 301 302
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

        return core.ParallelExecutor(
            places, self._persistable_vars,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy, self._graph)
303

F
flame 已提交
304 305 306
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

307
    def _compile(self, scope, place):
X
Xin Pan 已提交
308 309 310 311 312 313 314 315 316 317
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
318
        if self._compiled:
X
polish  
Xin Pan 已提交
319 320
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
321
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
322
                raise ValueError("Cannot compile with different place")
323
            return self
X
fix  
Xin Pan 已提交
324
        self._compiled = True
325 326 327 328

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
329 330 331
            self._executor = self._compile_data_parallel(
                use_cuda=isinstance(self._place, core.CUDAPlace),
                scope=self._scope)
F
flame 已提交
332 333
        elif self._is_inference:
            self._executor = self._compile_inference()
334 335 336 337
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self