layer.cc 16.5 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19

20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/framework/variable_helper.h"
23 24 25 26
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
27
#include "paddle/fluid/imperative/prepared_operator.h"
28
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
32
#include "paddle/fluid/platform/profiler.h"
33 34 35 36 37
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
38 39 40 41

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
42
using framework::Variable;
Z
Zeng Jinle 已提交
43 44 45 46 47 48 49 50
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
51 52 53
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
54 55 56 57 58 59 60 61 62 63 64 65
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
66 67 68 69 70 71 72 73 74
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
75 76
  }

J
Jiabin Yang 已提交
77 78 79 80 81
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
82
    }
J
Jiabin Yang 已提交
83 84 85 86
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

87
template <typename VarType>
J
Jiabin Yang 已提交
88 89
static std::string DebugString(
    const std::string& name,
90
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
91 92
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
93

J
Jiabin Yang 已提交
94 95
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
96

J
Jiabin Yang 已提交
97 98 99 100 101
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
102
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
132 133 134 135
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
136
  }
137

J
Jiabin Yang 已提交
138 139
  ss << "}";
  return ss.str();
140 141
}

142 143 144 145
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
146 147 148 149 150 151 152 153
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
154
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
155
    ++i;
156 157
  }

J
Jiabin Yang 已提交
158 159 160 161
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
162
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
163 164 165 166
    ++i;
  }
  return ss.str();
}
167

168 169 170 171 172 173 174 175 176 177
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
178
}
179

180
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
181
    : var_(var), grad_node_(var->GetGradNode()) {
182 183
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
184 185 186 187 188 189 190 191 192 193 194 195
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

J
Jiabin Yang 已提交
196 197
void VarBase::ClearGradient() {
  if (grad_var_) {
198 199 200
    if (grad_var_->Var().IsType<framework::SelectedRows>()) {
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::SelectedRows>();
201
      if (grad_t->mutable_value()->IsInitialized()) {
202 203 204
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
205 206 207 208
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
209
      platform::RecordEvent record_event("ClearGradient");
210 211
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
212 213 214 215
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
216 217 218
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
219
      }
220
    }
221 222 223 224
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
225
  }
J
Jiabin Yang 已提交
226
}
227

J
Jiabin Yang 已提交
228
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
229
                                             const bool blocking) const {
230
  PADDLE_ENFORCE_EQ(
231 232
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
                                Var().IsType<framework::SelectedRows>()),
233 234 235
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
236

237 238
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
239 240
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
241
        true, Name() + std::to_string(copied_counter_++));
242

243 244
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
245
    dst_tensor->set_lod(src_tensor.lod());
246 247 248
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
249 250 251 252 253 254 255
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
256
    }
257 258
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
259 260
    return new_var;
  } else {
261
    auto& src_selected_rows = Var().Get<framework::SelectedRows>();
262 263 264 265
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
266
        new_var->MutableVar()->GetMutable<framework::SelectedRows>();
267 268 269 270 271 272 273 274 275 276 277 278

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
279 280
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
281 282
    return new_var;
  }
M
minqiyang 已提交
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
  if (SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src.Name() << " to " << Name();
    SetPersistable(src.Persistable());
    SetDataType(src.DataType());
    SetType(src.Type());
    SetOverridedStopGradient(src.OverridedStopGradient());
    if (!src.SharedVar()->IsEmpty()) {
      const platform::Place& place = src.Place();
      if (src.Var().IsType<framework::LoDTensor>()) {
        auto& src_tensor = src.Var().Get<framework::LoDTensor>();
        auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, place, dst_tensor);
      } else if (src.Var().IsType<framework::SelectedRows>()) {
        auto& src_selected_rows = src.Var().Get<framework::SelectedRows>();
        auto* dst_selected_rows =
            MutableVar()->GetMutable<framework::SelectedRows>();
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), place,
                              dst_selected_rows->mutable_value());
      }
      if (blocking) {
        platform::DeviceContextPool::Instance().Get(place)->Wait();
      }
    }
  }
}

315 316 317 318 319 320 321 322 323
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

324
void OpBase::SetType(const std::string& type) {
H
hong 已提交
325
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
326
}
327

328 329 330
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
331 332
}

333 334 335 336 337 338 339
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
                          const platform::Place& place) {
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
340 341 342
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
343
  auto& info = op.Info();
J
Jiabin Yang 已提交
344
  if (info.infer_var_type_) {
345
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs);
J
Jiabin Yang 已提交
346
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
347
  }
348

J
Jiabin Yang 已提交
349 350 351
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
352 353 354
      if (var) {
        InitializeVariable(var->MutableVar(), var->Type());
      }
355 356
    }
  }
X
Xin Pan 已提交
357

358
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
378 379 380 381 382 383 384 385
  auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs);
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
    prepared_op.Run(ins, outs, attrs);
  } else {
    prepared_op.Run(*tmp_ins_ptr, outs, attrs);
  }
386

387
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
388 389 390 391 392 393 394 395 396 397

  // set the output var
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
398 399
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, place);
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, place);
414 415
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static void ClearNoNeedBufferInputs(OpBase* op) {
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
455 456
    const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
457 458 459 460 461
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

462 463
  auto grad_node =
      info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs, inplace_map);
464
  if (grad_node && !grad_node->empty()) {
465 466 467 468
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
469 470 471 472 473 474 475
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

476 477
}  // namespace imperative
}  // namespace paddle