test_matrixCompare.cpp 48.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when
/// only cpu version.

#include <gtest/gtest.h>
Y
Yu Yang 已提交
20
#include "TensorCheck.h"
H
hedaoyuan 已提交
21
#include "paddle/function/Function.h"
Z
zhangjinchao01 已提交
22
#include "paddle/gserver/tests/TestUtil.h"
Y
Yu Yang 已提交
23 24
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
H
hedaoyuan 已提交
25
#include "paddle/utils/Stat.h"
Y
Yu Yang 已提交
26
#include "paddle/utils/Util.h"
27

Z
zhangjinchao01 已提交
28 29
using namespace paddle;  // NOLINT
using namespace std;     // NOLINT
30 31
using autotest::TensorCheckEqual;
using autotest::TensorCheckErr;
L
liaogang 已提交
32

33 34 35 36 37
void testMatrixProjectionForward(int contextStart,
                                 int contextLength,
                                 bool padding,
                                 int batchSize,
                                 int inputDim) {
Z
zhangjinchao01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  int pad = std::max(0, -contextStart) +
            std::max(0, contextStart + contextLength - 1);
  if (pad == 0) padding = false;
  MatrixPtr cpuWeight = nullptr;
  MatrixPtr gpuWeight = nullptr;
  if (padding) {
    cpuWeight = std::make_shared<CpuMatrix>(pad, inputDim);
    gpuWeight = std::make_shared<GpuMatrix>(pad, inputDim);
    cpuWeight->randomizeUniform();
    gpuWeight->copyFrom(*cpuWeight);
  }

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  MatrixPtr cpuOutput =
      std::make_shared<CpuMatrix>(batchSize, inputDim * contextLength);
  MatrixPtr gpuOutput =
      std::make_shared<GpuMatrix>(batchSize, inputDim * contextLength);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);

  // calculate
  int beginPad = std::max(0, -contextStart);
69 70 71 72 73 74
  cpuOutput->contextProjectionForward(cpuInput,
                                      cpuWeight,
                                      *cpuSequence,
                                      contextLength,
                                      contextStart,
                                      beginPad,
Z
zhangjinchao01 已提交
75 76
                                      padding);

77 78 79 80 81 82
  gpuOutput->contextProjectionForward(gpuInput,
                                      gpuWeight,
                                      *gpuSequence,
                                      contextLength,
                                      contextStart,
                                      beginPad,
Z
zhangjinchao01 已提交
83 84
                                      padding);

85
  TensorCheckEqual(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
86 87
}

88 89 90 91 92
void testMatrixProjectionBackward(int contextStart,
                                  int contextLength,
                                  bool padding,
                                  int batchSize,
                                  int inputDim) {
Z
zhangjinchao01 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  MatrixPtr cpuOutputGrad =
      std::make_shared<CpuMatrix>(batchSize, inputDim * contextLength);
  MatrixPtr gpuOutputGrad =
      std::make_shared<GpuMatrix>(batchSize, inputDim * contextLength);
  cpuOutputGrad->randomizeUniform();
  gpuOutputGrad->copyFrom(*cpuOutputGrad);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  MatrixPtr cpuInputGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInputGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInputGrad->randomizeUniform();
  gpuInputGrad->copyFrom(*cpuInputGrad);

  int pad = std::max(0, -contextStart) +
            std::max(0, contextStart + contextLength - 1);
  if (pad == 0) padding = false;
  MatrixPtr cpuWeightGrad = nullptr;
  MatrixPtr gpuWeightGrad = nullptr;
  if (padding) {
    cpuWeightGrad = std::make_shared<CpuMatrix>(pad, inputDim);
    gpuWeightGrad = std::make_shared<GpuMatrix>(pad, inputDim);
    cpuWeightGrad->randomizeUniform();
    gpuWeightGrad->copyFrom(*cpuWeightGrad);
  }

  // calculate
  int beginPad = std::max(0, -contextStart);
124 125 126 127 128 129 130 131 132
  cpuOutputGrad->contextProjectionBackward(cpuInputGrad,
                                           cpuWeightGrad,
                                           *cpuSequence,
                                           contextLength,
                                           contextStart,
                                           beginPad,
                                           padding);
  gpuOutputGrad->contextProjectionBackwardData(
      gpuInputGrad, *gpuSequence, contextLength, contextStart);
Z
zhangjinchao01 已提交
133
  if (padding) {
134 135 136 137 138 139
    gpuOutputGrad->contextProjectionBackwardWeight(gpuWeightGrad,
                                                   *gpuSequence,
                                                   contextLength,
                                                   contextStart,
                                                   pad,
                                                   beginPad);
Z
zhangjinchao01 已提交
140 141
  }

142
  TensorCheckErr(*cpuInputGrad, *gpuInputGrad);
Z
zhangjinchao01 已提交
143
  if (padding) {
144
    TensorCheckErr(*cpuWeightGrad, *gpuWeightGrad);
Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154
  }
}

TEST(Matrix, projection) {
  for (auto contextStart : {-5, -3, -1, 0, 3}) {
    for (auto contextLength : {1, 2, 5, 7}) {
      for (auto trainablePadding : {false, true}) {
        for (auto batchSize : {1, 2, 5, 20, 100}) {
          for (auto inputDim : {15, 32, 63, 128, 200}) {
            VLOG(3) << " contextStart=" << contextStart
155 156 157 158 159 160 161 162 163 164 165 166 167
                    << " contextLength=" << contextLength
                    << " trainablePadding=" << trainablePadding
                    << " batchSize=" << batchSize << " inputDim=" << inputDim;
            testMatrixProjectionForward(contextStart,
                                        contextLength,
                                        trainablePadding,
                                        batchSize,
                                        inputDim);
            testMatrixProjectionBackward(contextStart,
                                         contextLength,
                                         trainablePadding,
                                         batchSize,
                                         inputDim);
Z
zhangjinchao01 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
          }
        }
      }
    }
  }
}

void testMatrixMaxSequence(int batchSize, int inputDim) {
  // forward
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  IVectorPtr cpuIndex = nullptr;
  IVectorPtr gpuIndex = nullptr;
  IVector::resizeOrCreate(cpuIndex, newBatchSize * inputDim, false);
  IVector::resizeOrCreate(gpuIndex, newBatchSize * inputDim, true);
  cpuIndex->zeroMem();
  gpuIndex->zeroMem();

  cpuOutput->maxSequenceForward(*cpuInput, *cpuSequence, *cpuIndex);
  gpuOutput->maxSequenceForward(*gpuInput, *gpuSequence, *gpuIndex);

203 204
  TensorCheckEqual(*cpuOutput, *gpuOutput);
  TensorCheckEqual(*cpuIndex, *gpuIndex);
Z
zhangjinchao01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  // backward
  MatrixPtr cpuOutputGrad = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutputGrad = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutputGrad->randomizeUniform();
  gpuOutputGrad->copyFrom(*cpuOutputGrad);

  MatrixPtr cpuInputGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInputGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInputGrad->randomizeUniform();
  gpuInputGrad->copyFrom(*cpuInputGrad);

  cpuInputGrad->maxSequenceBackward(*cpuOutputGrad, *cpuSequence, *cpuIndex);
  gpuInputGrad->maxSequenceBackward(*gpuOutputGrad, *gpuSequence, *gpuIndex);

220
  TensorCheckEqual(*cpuInputGrad, *gpuInputGrad);
Z
zhangjinchao01 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
}

TEST(Matrix, maxSequence) {
  for (auto batchSize : {1, 10, 128, 1000, 6000}) {
    for (auto inputDim : {1, 32, 100, 512}) {
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testMatrixMaxSequence(batchSize, inputDim);
    }
  }
}

void testMatrixGetSum(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

#ifndef PADDLE_TYPE_DOUBLE
  int x = log10(height * width);
  real err = 1e-6 * pow(10, x);
#else
  real err = 1e-8;
#endif

  real cpuSum = cpuInput->getSum();
  real gpuSum = gpuInput->getSum();

  EXPECT_LE(fabs(cpuSum - gpuSum), err);
}

void testMatrixZeroAtOffset(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuTest = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  cpuTest->copyFrom(*cpuA);

  int columnOffset = rand() % width;  // NOLINT we just use rand() for test.
  int numColumns = rand() % (width - columnOffset);  // NOLINT

263 264
  if (numColumns == 0) return;

Z
zhangjinchao01 已提交
265 266 267 268 269 270 271 272 273 274 275
  cpuA->zeroAtOffset(columnOffset, numColumns);
  gpuA->zeroAtOffset(columnOffset, numColumns);

  /* cpuTest */
  real* a = cpuTest->getData() + columnOffset;
  for (int64_t i = 0; i < height; ++i) {
    for (int64_t j = 0; j < numColumns; ++j) {
      a[i * width + j] = 0;
    }
  }

276 277
  TensorCheckEqual(*cpuA, *gpuA);
  TensorCheckEqual(*cpuA, *cpuTest);
Z
zhangjinchao01 已提交
278 279
}

X
xutianbing 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293
void testMatrixDeepSwap(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyB = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuCopyA->copyFrom(*cpuA);
  cpuCopyB->copyFrom(*cpuB);

  // swap matrix cpuA and cpuB
  cpuA->deepSwap(*cpuB);

H
hedaoyuan 已提交
294 295
  TensorCheckEqual(*cpuA, *cpuCopyB);
  TensorCheckEqual(*cpuB, *cpuCopyA);
X
xutianbing 已提交
296 297
}

Z
zhangjinchao01 已提交
298 299 300 301 302 303 304 305 306 307 308
void testMatrixTranspose(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuT = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuT = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);
  cpu->transpose(cpuT, false);
  gpu->transpose(gpuT, false);

309
  TensorCheckEqual(*cpuT, *gpuT);
Z
zhangjinchao01 已提交
310 311
}

L
lzhao4ever 已提交
312 313 314 315 316 317
void testMatrixInverse(int height) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, height);
  MatrixPtr cpuI = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpuI = std::make_shared<GpuMatrix>(height, height);

318
  /* Make matrix well conditioned: cpu * cpuT + Identity */
L
lzhao4ever 已提交
319
  cpu->randomizeUniform();
320 321 322 323 324 325
  MatrixPtr cpuT = cpu->getTranspose();
  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, height);
  outputCheck->mul(cpu, cpuT);
  cpu->setDiag(1.0);
  cpu->add(*outputCheck);

L
lzhao4ever 已提交
326 327 328 329
  gpu->copyFrom(*cpu);
  cpu->inverse(cpuI, false);
  gpu->inverse(gpuI, false);

330
  TensorCheckErr(*cpuI, *gpuI);
L
lzhao4ever 已提交
331 332

  outputCheck->mul(cpu, cpuI);
333
  cpu->setDiag(1.0);
334
  TensorCheckErr(*cpu, *outputCheck);
L
lzhao4ever 已提交
335 336
}

Z
zhangjinchao01 已提交
337
TEST(Matrix, unary) {
L
lzhao4ever 已提交
338 339
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
Z
zhangjinchao01 已提交
340 341
      VLOG(3) << " height=" << height << " width=" << width;

342
      testMatrixDeepSwap(height, width);
343
      testMatrixZeroAtOffset(height, width);
Z
zhangjinchao01 已提交
344 345 346
      testMatrixGetSum(height, width);
      testMatrixTranspose(height, width);
    }
L
lzhao4ever 已提交
347 348
    // inverse
    testMatrixInverse(height);
Z
zhangjinchao01 已提交
349 350 351
  }
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
void testMatrixSoftmax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  TensorCheckErr(*cpuOutput, *gpuOutput);
}

Z
zhangjinchao01 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void testSequenceSoftmax(int batchSize) {
  // forward
  int inputDim = 1;
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);

384
  TensorCheckErr(*cpuInput, *gpuInput);
Z
zhangjinchao01 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

void testMatrixSoftmaxThreshold(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  cpuInput->getData()[0] = 100.0;
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
  outputCheck->copyFrom(*gpuOutput);
  // check output zero
  int cpuCount = 0;
  int gpuCount = 0;
  auto zeroNum = [](MatrixPtr out, int& count) {
    for (size_t i = 0; i < out->getHeight(); i++) {
      for (size_t j = 0; j < out->getWidth(); j++) {
        if (out->getElement(i, j) == 0) count++;
      }
    }
  };
  zeroNum(cpuOutput, cpuCount);
  zeroNum(outputCheck, gpuCount);
  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
}

void testMatrixSoftmaxBp(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  gpuOutput->softmaxBackward(*gpuInput);

  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
  sftMaxSum->colMerge(*sftMaxDot);
  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);

437
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
438 439 440 441 442 443 444
}

TEST(Matrix, softmax) {
  for (auto height : {1, 11, 73, 128, 200}) {
    for (auto width : {1, 32, 100, 512, 1000}) {
      VLOG(3) << " height=" << height << " width=" << width;

445
      testMatrixSoftmax(height, width);
Z
zhangjinchao01 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
      testMatrixSoftmaxBp(height, width);
      testMatrixSoftmaxThreshold(height, width);
    }
    testSequenceSoftmax(height);
  }
}

void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
  MatrixPtr cpuTable = std::make_shared<CpuMatrix>(tableSize, inputDim);
  MatrixPtr gpuTable = std::make_shared<GpuMatrix>(tableSize, inputDim);
  cpuTable->randomizeUniform();
  gpuTable->copyFrom(*cpuTable);

  IVectorPtr cpuIds;
  IVectorPtr gpuIds;
  cpuIds = VectorT<int>::create(numSamples, false);
  gpuIds = VectorT<int>::create(numSamples, true);
  cpuIds->rand(tableSize);
  gpuIds->copyFrom(*cpuIds);

  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, inputDim);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);

  cpuOutput->addToRows(*cpuTable, *cpuIds);
  gpuOutput->addToRows(*gpuTable, *gpuIds);

474
  TensorCheckErr(*cpuTable, *gpuTable);
Z
zhangjinchao01 已提交
475 476 477 478 479 480 481
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
482
                << " inputDim=" << inputDim;
Z
zhangjinchao01 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        testMatrixAddToRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

  cpuC->mul(cpuA, cpuB, alpha, beta);
  gpuC->mul(gpuA, gpuB, alpha, beta);

516
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
}

void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

  auto subSize = [](int& start, int& end, int dim) {
    if (dim == 1) {
      start = 0;
      end = dim;
    } else {
      int subDim = rand() % (dim - 1) + 1;  // NOLINT
      start = rand() % (dim - subDim);      // NOLINT
      end = start + subDim;
    }
  };

554 555 556 557 558 559
  auto subMatrix = [](MatrixPtr& sub,
                      MatrixPtr matrix,
                      size_t startRow,
                      size_t endRow,
                      size_t startCol,
                      size_t endCol) {
Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    if (!matrix->isTransposed()) {
      sub = matrix->subMatrix(startRow, endRow, startCol, endCol);
    } else {
      sub = matrix->subMatrix(startCol, endCol, startRow, endRow);
    }
  };

  int startM, endM;
  int startN, endN;
  int startK, endK;
  subSize(startM, endM, dimM);
  subSize(startN, endN, dimN);
  subSize(startK, endK, dimK);

  MatrixPtr subCpuA;
  MatrixPtr subCpuB;
  MatrixPtr subGpuA;
  MatrixPtr subGpuB;
  subMatrix(subCpuA, cpuA, startM, endM, startK, endK);
  subMatrix(subGpuA, gpuA, startM, endM, startK, endK);
  subMatrix(subCpuB, cpuB, startK, endK, startN, endN);
  subMatrix(subGpuB, gpuB, startK, endK, startN, endN);
  MatrixPtr subCpuC = cpuC->subMatrix(startM, endM, startN, endN);
  MatrixPtr subGpuC = gpuC->subMatrix(startM, endM, startN, endN);

  subCpuC->mul(subCpuA, subCpuB, alpha, beta);
  subGpuC->mul(subGpuA, subGpuB, alpha, beta);

588
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
589 590 591 592 593 594 595 596 597 598 599 600
}

TEST(Matrix, mul) {
  for (auto transa : {false, true}) {
    for (auto transb : {false, true}) {
      for (auto dimM : {1, 9, 53, 127, 345, 1023, 2135}) {
        for (auto dimN : {1, 5, 37, 256, 1024}) {
          for (auto dimK : {8, 45, 346, 784, 1025}) {
            if (true == transa && true == transb) {
              continue;
            }
            VLOG(3) << setiosflags(ios::left) << setfill(' ')
601 602 603
                    << " transa=" << transa << " transb=" << transb
                    << " dimM=" << setw(5) << dimM << " dimN=" << setw(5)
                    << dimN << " dimK=" << setw(5) << dimK;
Z
zhangjinchao01 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

            testMatrixMul(transa, transb, dimM, dimN, dimK);
            testSubMatrixMul(transa, transb, dimM, dimN, dimK);
          }
        }
      }
    }
  }
}

void testVectorRowFunc(int size) {
  CpuVectorPtr cpu = std::make_shared<CpuVectorT<real>>(size);
  GpuVectorPtr gpu = std::make_shared<GpuVectorT<real>>(size);

  cpu->rand();
  gpu->copyFrom(*cpu);

  EXPECT_EQ(cpu->getMax(), gpu->getMax());
  EXPECT_EQ(cpu->getMin(), gpu->getMin());
  EXPECT_EQ(cpu->getAbsMax(), gpu->getAbsMax());
}

TEST(Vector, rowFunc) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorRowFunc(size);
  }
}

633
template <class T>
Z
zhangjinchao01 已提交
634 635 636 637 638 639 640 641
void testVectorReset(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpu->reset(value);
  gpu->reset(value);

642
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
643 644
}

645
template <class T>
Z
zhangjinchao01 已提交
646 647 648
void testVecortSelectFrom(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuDst = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuDst = std::make_shared<GpuVectorT<T>>(size);
649 650 651 652
  std::shared_ptr<CpuVectorT<T>> cpuSrc =
      std::make_shared<CpuVectorT<T>>(size * 2);
  std::shared_ptr<GpuVectorT<T>> gpuSrc =
      std::make_shared<GpuVectorT<T>>(size * 2);
Z
zhangjinchao01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  CpuIVectorPtr cpuIds = std::make_shared<CpuVectorT<int>>(size);
  GpuIVectorPtr gpuIds = std::make_shared<GpuVectorT<int>>(size);

  if (std::is_same<T, real>::value) {
    cpuSrc->rand();
  } else {
    cpuSrc->rand(100000);
  }
  gpuSrc->copyFrom(*cpuSrc);
  cpuIds->rand(size);
  gpuIds->copyFrom(*cpuIds);

  cpuDst->selectFrom(*cpuSrc, *cpuIds);
  gpuDst->selectFrom(*gpuSrc, *gpuIds);

668
  TensorCheckEqual(*cpuDst, *gpuDst);
Z
zhangjinchao01 已提交
669 670
}

671
template <class T>
Z
zhangjinchao01 已提交
672 673 674 675 676 677 678
void testVecotrZeroMem(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  cpu->zeroMem();
  gpu->zeroMem();

679
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
680 681
}

682
template <class T>
Z
zhangjinchao01 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
void testVectorIsEqual(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuA = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<CpuVectorT<T>> cpuB = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuA = std::make_shared<GpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuB = std::make_shared<GpuVectorT<T>>(size);

  if (std::is_same<T, real>::value) {
    cpuB->rand();
  } else {
    cpuB->rand(100000);
  }
  gpuB->copyFrom(*cpuB);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpuA->isEqualTo(*cpuB, value);
  gpuA->isEqualTo(*gpuB, value);

700
  TensorCheckEqual(*cpuA, *gpuA);
Z
zhangjinchao01 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

TEST(Vector, Equal) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorReset<int>(size);
    testVectorReset<real>(size);
    testVecortSelectFrom<int>(size);
    testVecortSelectFrom<real>(size);
    testVecotrZeroMem<int>(size);
    testVecotrZeroMem<real>(size);
    testVectorIsEqual<int>(size);
    testVectorIsEqual<real>(size);
  }
}

void testMatrixTopK(int samples, int dim, int beamSize) {
  MatrixPtr cpuSrc = std::make_shared<CpuMatrix>(samples, dim);
  MatrixPtr gpuSrc = std::make_shared<GpuMatrix>(samples, dim);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

731
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
732 733 734 735
}

TEST(Matrix, topK) {
  for (auto samples : {1, 5, 31, 90, 150, 500}) {
736 737
    for (auto dim :
         {1, 5, 8, 10, 15, 64, 80, 120, 256, 300, 1280, 5120, 50000}) {
Z
zhangjinchao01 已提交
738 739
      for (auto beamSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
        if (beamSize > dim) continue;
740
        VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
Z
zhangjinchao01 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
                << " dim=" << dim;
        testMatrixTopK(samples, dim, beamSize);
      }
    }
  }
}

void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
  int nnz = samples * dim * ratio;
  MatrixPtr cpuSrc = std::make_shared<CpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr gpuSrc = std::make_shared<GpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);
  cpuVal->zero();
  cpuIds->zero();
  gpuVal->zero();
  gpuIds->zero();

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

767
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

  IVectorPtr outCheckIds = std::make_shared<CpuIVector>(samples * beamSize);
  outCheckIds->copyFrom(*gpuIds);

  const int* data1 = cpuIds->getData();
  const int* data2 = outCheckIds->getData();
  size_t size = cpuIds->getSize();
  for (size_t i = 0; i < size; i++) {
    if (data1[i] == -1 && data1[i] != data2[i]) {
      EXPECT_EQ(data1[i], data2[i]);
    }
  }
}

TEST(SMatrix, topK) {
  for (auto samples : {1, 5, 100}) {
    for (auto dim : {10000, 10000, 50000}) {
      for (auto beamSize : {1, 5, 40, 100, 500}) {
        for (auto ratio : {0.01, 0.001}) {
          if (beamSize > dim) continue;
788 789
          VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
                  << " dim=" << dim << " ratio=" << ratio;
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
          testSMatrixTopK(samples, dim, beamSize, ratio);
        }
      }
    }
  }
}

void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  cpuOutput->sequenceAvgForward(*cpuInput, *cpuSequence, mode);
  gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);

817
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831
}

TEST(Matrix, sequenceAvgForward) {
  for (auto batchSize : {10, 128, 6000}) {
    for (auto inputDim : {32, 100, 512}) {
      for (auto mode : {0, 1, 2}) {
        VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim
                << " mode=" << mode;
        testMatrixSequenceAvgForward(batchSize, inputDim, mode);
      }
    }
  }
}

832
void testCosSimDerivate(int heightX, int heightY, int width, real scale) {
Z
zhangjinchao01 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
  MatrixPtr prevOutX = CpuMatrix::create(heightX, width, false, false);
  MatrixPtr prevOutY = CpuMatrix::create(heightY, width, false, false);
  MatrixPtr grad = CpuMatrix::create(heightX, 1, false, false);
  MatrixPtr output = CpuMatrix::create(heightX, 1, false, false);
  MatrixPtr prevGradX = CpuMatrix::create(heightX, width, false, false);
  MatrixPtr prevGradY = CpuMatrix::create(heightY, width, false, false);

  prevOutX->randomizeUniform();
  prevOutY->randomizeUniform();
  grad->randomizeUniform();
  output->randomizeUniform();
  prevGradX->randomizeUniform();
  prevGradY->randomizeUniform();

  MatrixPtr prevOutXGpu = GpuMatrix::create(heightX, width, false, true);
  MatrixPtr prevOutYGpu = GpuMatrix::create(heightY, width, false, true);
  MatrixPtr gradGpu = GpuMatrix::create(heightX, 1, false, true);
  MatrixPtr outputGpu = GpuMatrix::create(heightX, 1, false, true);
  MatrixPtr prevGradXGpu = GpuMatrix::create(heightX, width, false, true);
  MatrixPtr prevGradYGpu = GpuMatrix::create(heightY, width, false, true);

  prevOutXGpu->copyFrom(*prevOutX);
  prevOutYGpu->copyFrom(*prevOutY);
  gradGpu->copyFrom(*grad);
  outputGpu->copyFrom(*output);
  prevGradXGpu->copyFrom(*prevGradX);
  prevGradYGpu->copyFrom(*prevGradY);

861 862
  grad->cosSimDerivative(
      *output, *prevOutX, *prevOutY, *prevGradX, *prevGradY, scale);
Z
zhangjinchao01 已提交
863 864 865 866 867 868 869 870

  gradGpu->cosSimDerivative(*outputGpu,
                            *prevOutXGpu,
                            *prevOutYGpu,
                            *prevGradXGpu,
                            *prevGradYGpu,
                            scale);

871 872
  TensorCheckErr(*prevGradX, *prevGradXGpu);
  TensorCheckErr(*prevGradY, *prevGradYGpu);
Z
zhangjinchao01 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886
}

TEST(Matrix, cosSimDerivate) {
  for (auto heightX : {1, 10, 100}) {
    for (auto heightY : {1, heightX}) {
      for (auto width : {1, 10, 100}) {
        for (auto scale : {1.0, 2.0}) {
          testCosSimDerivate(heightX, heightY, width, scale);
        }
      }
    }
  }
}

887 888 889 890
void testParamReluBackwardDiff(int height,
                               int width,
                               int w_height,
                               int w_width) {
Z
zhangjinchao01 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  MatrixPtr oGrad = CpuMatrix::create(height, width, false, false);
  MatrixPtr input = CpuMatrix::create(height, width, false, false);
  MatrixPtr diff = CpuMatrix::create(height, width, false, false);
  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);

  oGrad->randomizeUniform();
  input->randomizeUniform();
  w->randomizeUniform();
  diff->randomizeUniform();
  input->add(-0.5);

  MatrixPtr oGradGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr diffGpu = CpuMatrix::create(height, width, false, true);
  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);

  oGradGpu->copyFrom(*oGrad);
  inputGpu->copyFrom(*input);
  wGpu->copyFrom(*w);
  diffGpu->copyFrom(*diff);

  diff->paramReluBackwardDiff(*oGrad, *input, *w);
  diffGpu->paramReluBackwardDiff(*oGradGpu, *inputGpu, *wGpu);

915
  TensorCheckErr(*diff, *diffGpu);
Z
zhangjinchao01 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

TEST(Matrix, paramReluBackwardDiff) {
  for (auto height : {10, 100}) {
    for (auto width : {10, 100}) {
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
          testParamReluBackwardDiff(height, width, w_height, w_width);
        }
      }
    }
  }
}

H
He 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void testClassificationError(int numSamples, int dim) {
  MatrixPtr cpuError = std::make_shared<CpuMatrix>(numSamples, 1);
  MatrixPtr gpuError = std::make_shared<GpuMatrix>(numSamples, 1);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, dim);
  IVectorPtr cpuLabel = std::make_shared<CpuIVector>(numSamples);
  IVectorPtr gpuLabel = std::make_shared<GpuIVector>(numSamples);

  cpuOutput->randomizeUniform();
  cpuLabel->rand(dim);
  gpuOutput->copyFrom(*cpuOutput);
  gpuLabel->copyFrom(*cpuLabel);

  cpuError->classificationError(cpuOutput, cpuLabel);
  gpuError->classificationError(gpuOutput, gpuLabel);

946
  TensorCheckEqual(*cpuError, *gpuError);
H
He 已提交
947 948 949 950 951 952 953 954 955 956 957
}

TEST(Matrix, classificationError) {
  for (auto numSamples : {1, 10, 100, 1000, 70000}) {
    for (auto dim : {1, 10, 100, 1000}) {
      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
      testClassificationError(numSamples, dim);
    }
  }
}

958 959 960 961 962 963 964 965 966 967
void testMaxPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  target->maxPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->maxPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
1009 1010 1011 1012 1013 1014 1015
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
  targetCheck->copyFrom(*targetGpu);
  checkMatrixEqual(target, targetCheck);

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1016 1017
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1018 1019 1020 1021 1022 1023

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  inputGrad->maxPoolBackward(*input,
                             imgSizeH,
                             imgSizeW,
                             *targetGrad,
                             *target,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->maxPoolBackward(*inputGpu,
                                imgSizeH,
                                imgSizeW,
                                *targetGpuGrad,
                                *targetGpu,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
  MatrixPtr targetBwdCheck =
      CpuMatrix::create(numSamples, inWidth, false, false);
1056 1057 1058 1059
  targetBwdCheck->copyFrom(*inputGpuGrad);
  checkMatrixEqual(inputGrad, targetBwdCheck);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
void testAvgPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
  target->avgPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->avgPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
1111 1112

  TensorCheckErr(*target, *targetGpu);
1113 1114 1115 1116

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1117 1118
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1119 1120 1121 1122 1123 1124

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  inputGrad->avgPoolBackward(*targetGrad,
                             imgSizeH,
                             imgSizeW,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->avgPoolBackward(*targetGpuGrad,
                                imgSizeH,
                                imgSizeW,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
1151 1152

  TensorCheckErr(*inputGrad, *inputGpuGrad);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

TEST(Matrix, PoolFwdBwd) {
  for (auto numSamples : {5, 32}) {
    for (auto channels : {1, 9, 32}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto sizeX : {2, 5}) {
            for (auto sizeY : {2, 5}) {
              for (auto sH : {1, 2}) {
                for (auto sW : {1, 2}) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
                  for (auto pH : {0, (sizeY - 1) / 2}) {
                    for (auto pW : {0, (sizeX - 1) / 2}) {
                      VLOG(3) << " numSamples=" << numSamples
                              << " channels=" << channels
                              << " imgSizeH=" << imgSizeH
                              << " imgSizeW=" << imgSizeW << " sizeX=" << sizeX
                              << " sizeY=" << sizeY << " strideH=" << sH
                              << " strideW=" << sW << " padingH=" << pH
                              << " padingW=" << pW;
                      testMaxPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                      testAvgPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                    }
                  }
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                }
              }
            }
          }
        }
      }
    }
  }
}

1205 1206
void testMaxOutFwdBwd(
    int numSamples, int imgSizeH, int imgSizeW, int channels, int groups) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  int inWidth = imgSizeH * imgSizeW * channels;
  int outChannels = channels / groups;
  int outWidth = imgSizeH * imgSizeW * outChannels;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  IVectorPtr id = CpuIVector::create(numSamples * outWidth, false);
  IVectorPtr idGpu = GpuIVector::create(numSamples * outWidth, true);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

  target->maxoutForward(*input, *id, outChannels, groups);
  targetGpu->maxoutForward(*inputGpu, *idGpu, outChannels, groups);

1227 1228
  TensorCheckErr(*target, *targetGpu);
  TensorCheckEqual(*id, *idGpu);
1229 1230 1231 1232 1233 1234

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1235 1236
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1237 1238 1239 1240 1241 1242 1243 1244 1245

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->maxoutBackward(*targetGrad, *id, outChannels, groups);
  inputGpuGrad->maxoutBackward(*targetGpuGrad, *idGpu, outChannels, groups);

1246
  TensorCheckErr(*inputGrad, *inputGpuGrad);
1247 1248 1249 1250 1251 1252 1253 1254
}

TEST(Matrix, MaxOutFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto groups : {2, 4}) {
1255 1256
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
1257 1258 1259 1260 1261 1262 1263 1264
                    << " groups=" << groups;
            testMaxOutFwdBwd(numSamples, imgSizeH, imgSizeW, channels, groups);
          }
        }
      }
    }
  }
}
H
hedaoyuan 已提交
1265

H
hedaoyuan 已提交
1266 1267 1268 1269 1270
void testCrossMapNormalFwd(
    int numSamples, int channels, int imgSizeH, int imgSizeW, int sizeX) {
  float scale = 1.5;
  float pow = 0.5;
  int width = imgSizeH * imgSizeW * channels;
H
hedaoyuan 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  CpuMatrix inputs(numSamples, width);
  CpuMatrix denoms(numSamples, width);
  CpuMatrix outputs(numSamples, width);
  GpuMatrix inputsGpu(numSamples, width);
  GpuMatrix denomsGpu(numSamples, width);
  GpuMatrix outputsGpu(numSamples, width);

  inputs.randomizeUniform();
  outputs.randomizeUniform();
  inputsGpu.copyFrom(inputs);
  outputsGpu.copyFrom(outputs);

H
hedaoyuan 已提交
1283 1284
  FunctionBase* cpu =
      FunctionBase::funcRegistrar_.createByType(FUNC_NAME(CrossMapNormal, CPU));
H
hedaoyuan 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
  FunctionBase* gpu =
      FunctionBase::funcRegistrar_.createByType(FUNC_NAME(CrossMapNormal, GPU));
  cpu->init(FuncConfig()
                .set("size", (size_t)sizeX)
                .set("scale", scale)
                .set("pow", pow));
  gpu->init(FuncConfig()
                .set("size", (size_t)sizeX)
                .set("scale", scale)
                .set("pow", pow));
H
hedaoyuan 已提交
1295

1296 1297 1298 1299 1300
  Dims dims{
      (size_t)numSamples, (size_t)channels, (size_t)imgSizeH, (size_t)imgSizeW};
  cpu->calc({Tensor(inputs.getData(), dims)},
            {Tensor(outputs.getData(), dims), Tensor(denoms.getData(), dims)},
            {});
H
hedaoyuan 已提交
1301 1302 1303 1304 1305

  gpu->calc(
      {Tensor(inputsGpu.getData(), dims)},
      {Tensor(outputsGpu.getData(), dims), Tensor(denomsGpu.getData(), dims)},
      {});
H
hedaoyuan 已提交
1306

H
hedaoyuan 已提交
1307 1308
  TensorCheckErr(outputs, outputsGpu);
  TensorCheckErr(denoms, denomsGpu);
H
hedaoyuan 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
}

TEST(Matrix, crossMapNormalFwd) {
  for (auto numSamples : {5, 32}) {
    for (auto channels : {1, 5, 32}) {
      for (auto imgSizeH : {5, 33, 100}) {
        for (auto imgSizeW : {5, 32, 96}) {
          for (auto sizeX : {1, 2, 3, 5, 7}) {
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
                    << " sizeX=" << sizeX;
            testCrossMapNormalFwd(
                numSamples, channels, imgSizeH, imgSizeW, sizeX);
          }
        }
      }
    }
  }
}

void testCrossMapNormalBwd(
    int numSamples, int channels, int imgSizeH, int imgSizeW, int sizeX) {
  float scale = 1.5;
  float pow = 0.5;
  size_t width = imgSizeH * imgSizeW * channels;

H
hedaoyuan 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
  CpuMatrix inputsGrad(numSamples, width);
  CpuMatrix inputsValue(numSamples, width);
  CpuMatrix outputsGrad(numSamples, width);
  CpuMatrix outputsValue(numSamples, width);
  CpuMatrix denoms(numSamples, width);

  outputsGrad.randomizeUniform();
  denoms.randomizeUniform();
  inputsValue.randomizeUniform();
  outputsValue.randomizeUniform();
  inputsGrad.randomizeUniform();
  denoms.add(0.01);

  GpuMatrix inputsGradGpu(numSamples, width);
  GpuMatrix inputsValueGpu(numSamples, width);
  GpuMatrix outputsGradGpu(numSamples, width);
  GpuMatrix outputsValueGpu(numSamples, width);
  GpuMatrix denomsGpu(numSamples, width);

  outputsGradGpu.copyFrom(outputsGrad);
  denomsGpu.copyFrom(denoms);
  inputsValueGpu.copyFrom(inputsValue);
  outputsValueGpu.copyFrom(outputsValue);
  inputsGradGpu.copyFrom(inputsGrad);

H
hedaoyuan 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
  FunctionBase* cpu = FunctionBase::funcRegistrar_.createByType(
      FUNC_NAME(CrossMapNormalGrad, CPU));
  FunctionBase* gpu = FunctionBase::funcRegistrar_.createByType(
      FUNC_NAME(CrossMapNormalGrad, GPU));
  cpu->init(FuncConfig()
                .set("size", (size_t)sizeX)
                .set("scale", scale)
                .set("pow", pow));
  gpu->init(FuncConfig()
                .set("size", (size_t)sizeX)
                .set("scale", scale)
                .set("pow", pow));

  Dims dims{
      (size_t)numSamples, (size_t)channels, (size_t)imgSizeH, (size_t)imgSizeW};
  cpu->calc({Tensor(inputsValue.getData(), dims),
             Tensor(outputsValue.getData(), dims),
             Tensor(outputsGrad.getData(), dims),
             Tensor(denoms.getData(), dims)},
            {Tensor(inputsGrad.getData(), dims)},
            {});

  gpu->calc({Tensor(inputsValueGpu.getData(), dims),
             Tensor(outputsValueGpu.getData(), dims),
             Tensor(outputsGradGpu.getData(), dims),
             Tensor(denomsGpu.getData(), dims)},
            {Tensor(inputsGradGpu.getData(), dims)},
            {});
H
hedaoyuan 已提交
1388 1389

  TensorCheckErr(inputsGrad, inputsGradGpu);
H
hedaoyuan 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
}

TEST(Matrix, crossMapNormalBwd) {
  for (auto numSamples : {5, 32}) {
    for (auto channels : {1, 5, 32}) {
      for (auto imgSizeH : {5, 33, 100}) {
        for (auto imgSizeW : {5, 32, 96}) {
          for (auto sizeX : {1, 2, 3, 5, 7}) {
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
                    << " sizeX=" << sizeX;
            testCrossMapNormalBwd(
                numSamples, channels, imgSizeH, imgSizeW, sizeX);
          }
        }
      }
    }
  }
}
1409

Z
zhangjinchao01 已提交
1410 1411 1412 1413 1414 1415 1416
int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  return RUN_ALL_TESTS();
}

#endif