conv2d_op.h 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

武毅 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
inline int OutputSize(int input_size, int filter_size, int padding,
                      int stride) {
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv2DOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};

class Conv2DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Conv2DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

57
template <typename Place, typename T>
Y
Yu Yang 已提交
58
class GemmConv2DKernel : public framework::OpKernel<T> {
59 60 61
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
62 63 64 65
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
66 67 68 69 70
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
71
    int groups = context.Attr<int>("groups");
72 73 74

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
75 76 77
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
78 79 80 81 82 83
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
84
    // use col_shape in the im2col calculation
H
hedaoyuan 已提交
85 86
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
87 88
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
H
hedaoyuan 已提交
89
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
90
        output_height * output_width};
H
hedaoyuan 已提交
91
    Tensor col;
H
hedaoyuan 已提交
92
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
93 94 95 96 97
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
98 99 100

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
H
hedaoyuan 已提交
101 102
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
103 104 105 106
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};
H
hedaoyuan 已提交
107
    // convolution operator: im2col + gemm
H
hedaoyuan 已提交
108 109
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
110
    for (int i = 0; i < batch_size; i++) {
111 112
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
H
hedaoyuan 已提交
113 114
      for (int g = 0; g < groups; g++) {
        // im2col
115
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
116 117
        im2col(context.device_context(), in_slice, col, strides[0], strides[1],
               paddings[0], paddings[1]);
H
hedaoyuan 已提交
118 119

        // gemm
120
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
121
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
122 123
        math::matmul<Place, T>(context.device_context(), filter_slice, false,
                               col_matrix, false, T(1.0), &out_slice, T(0.0));
H
hedaoyuan 已提交
124
      }
125 126 127 128 129
    }
  }
};

template <typename Place, typename T>
Y
Yu Yang 已提交
130
class GemmConvGrad2DKernel : public framework::OpKernel<T> {
131 132
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
133 134 135 136 137
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
138
    Tensor* filter_grad =
H
hedaoyuan 已提交
139
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
140 141 142 143 144

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
145 146 147

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
148
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
149 150 151

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
152 153
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
154
    int output_channels = output_grad->dims()[1];
H
hedaoyuan 已提交
155 156 157 158 159 160 161 162 163
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
164
    // use col_shape in the im2col and col2im calculation
165 166
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
167 168
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
169
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
170 171
        output_height * output_width};
    Tensor col;
H
hedaoyuan 已提交
172
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
173 174 175 176 177
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
H
hedaoyuan 已提交
178 179 180 181 182 183 184

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};

H
hedaoyuan 已提交
185 186
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
187 188
    filter.Resize(filter_matrix_shape);

H
hedaoyuan 已提交
189 190
    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
191 192
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
H
hedaoyuan 已提交
193 194 195 196 197 198 199 200 201 202 203 204

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
205
          // gemm
H
hedaoyuan 已提交
206 207
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
208 209
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
210
          math::matmul<Place, T>(context.device_context(), filter_slice, true,
H
hedaoyuan 已提交
211 212
                                 out_grad_slice, false, T(1.0), &col_matrix,
                                 T(0.0));
213 214 215 216

          // col2im
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
217 218
          col2im(context.device_context(), in_grad_slice, col, strides[0],
                 strides[1], paddings[0], paddings[1]);
219
        }
H
hedaoyuan 已提交
220 221
      }
    }
222

H
hedaoyuan 已提交
223 224 225 226 227 228 229 230 231 232 233 234
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
235
          // im2col
H
hedaoyuan 已提交
236 237
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
238
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
239 240
          im2col(context.device_context(), in_slice, col, strides[0],
                 strides[1], paddings[0], paddings[1]);
241 242 243

          // gemm
          Tensor filter_grad_slice =
H
hedaoyuan 已提交
244
              filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
245 246 247
          math::matmul<Place, T>(context.device_context(), out_grad_slice,
                                 false, col_matrix, true, T(1.0),
                                 &filter_grad_slice, T(1.0));
248
        }
249
      }
H
hedaoyuan 已提交
250
    }
251 252 253 254 255
  }
};

}  // namespace operators
}  // namespace paddle