test_DetectionOutput.cpp 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
#include <vector>

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

// Do one forward pass of priorBox layer and check to see if its output
// matches the given result
void doOneDetectionOutputTest(MatrixPtr& inputLoc,
                              MatrixPtr& inputConf,
                              MatrixPtr& inputPriorBox,
                              size_t feature_map_width,
                              size_t feature_map_height,
                              real nms_threshold,
                              bool use_gpu,
                              MatrixPtr& result) {
  // Setting up the detection output layer
  TestConfig configt;
  configt.layerConfig.set_type("detection_output");
  LayerInputConfig* input = configt.layerConfig.add_inputs();
  configt.layerConfig.add_inputs();
  configt.layerConfig.add_inputs();

  DetectionOutputConfig* detOutput = input->mutable_detection_output_conf();
  detOutput->set_width(feature_map_width);
  detOutput->set_height(feature_map_height);
  detOutput->set_nms_threshold(nms_threshold);
  detOutput->set_num_classes(2);
  detOutput->set_nms_top_k(20);
  detOutput->set_keep_top_k(10);
  detOutput->set_background_id(0);
  detOutput->set_confidence_threshold(0.01);
  detOutput->set_input_num(1);
  configt.inputDefs.push_back({INPUT_DATA_TARGET, "priorbox", 32, 0});
  configt.inputDefs.push_back({INPUT_DATA, "input_loc", 16, 0});
  configt.inputDefs.push_back({INPUT_DATA, "input_conf", 8, 0});

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, use_gpu);

  dataLayers[0]->getOutputValue()->copyFrom(*inputPriorBox);
  dataLayers[1]->getOutputValue()->copyFrom(*inputLoc);
  dataLayers[2]->getOutputValue()->copyFrom(*inputConf);

  // test layer initialize
68 69
  bool store_FLAGS_use_gpu = FLAGS_use_gpu;
  FLAGS_use_gpu = use_gpu;
70 71 72
  std::vector<ParameterPtr> parameters;
  LayerPtr detectionOutputLayer;
  initTestLayer(configt, &layerMap, &parameters, &detectionOutputLayer);
73
  FLAGS_use_gpu = store_FLAGS_use_gpu;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  detectionOutputLayer->forward(PASS_GC);
  checkMatrixEqual(detectionOutputLayer->getOutputValue(), result);
}

TEST(Layer, detectionOutputLayerFwd) {
  bool useGpu = false;
  // CPU case 1.
  MatrixPtr inputLoc;
  MatrixPtr inputConf;
  MatrixPtr inputPriorBox;
  MatrixPtr result, result2, result3, result4;
  real nmsTreshold = 0.01;
  real inputLocData[] = {0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1,
                         0.1};
  real inputConfData[] = {0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6};
  real inputPriorBoxData[] = {0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.2, 0.2,
                              0.2, 0.2, 0.6, 0.6, 0.1, 0.1, 0.2, 0.2,
                              0.3, 0.3, 0.7, 0.7, 0.1, 0.1, 0.2, 0.2,
                              0.4, 0.4, 0.8, 0.8, 0.1, 0.1, 0.2, 0.2};
  real resultData[] = {
      0, 1, 0.68997443, 0.099959746, 0.099959746, 0.50804031, 0.50804031};
  inputLoc = Matrix::create(1, 16, false, useGpu);
  inputConf = Matrix::create(1, 8, false, useGpu);
  inputPriorBox = Matrix::create(1, 32, false, useGpu);
  result = Matrix::create(1, 7, false, useGpu);
  inputLoc->setData(inputLocData);
  inputConf->setData(inputConfData);
  inputPriorBox->setData(inputPriorBoxData);
  result->setData(resultData);
  doOneDetectionOutputTest(inputLoc,
                           inputConf,
                           inputPriorBox,
                           /* feature_map_width */ 1,
                           /* feature_map_height */ 1,
                           nmsTreshold,
                           useGpu,
                           result);

  // CPU case 2.
  nmsTreshold = 0.2;
  result2 = Matrix::create(2, 7, false, useGpu);
  real resultData2[] = {0,
                        1,
                        0.68997443,
                        0.099959746,
                        0.099959746,
                        0.50804031,
                        0.50804031,
                        0,
                        1,
                        0.59868765,
                        0.29995975,
                        0.29995975,
                        0.70804024,
                        0.70804024};
  result2->setData(resultData2);
  doOneDetectionOutputTest(inputLoc,
                           inputConf,
                           inputPriorBox,
                           /* feature_map_width */ 1,
                           /* feature_map_height */ 1,
                           nmsTreshold,
                           useGpu,
                           result2);

153
#ifdef PADDLE_WITH_CUDA
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  // GPU case 1.
  useGpu = true;
  inputLoc = Matrix::create(1, 16, false, useGpu);
  inputConf = Matrix::create(1, 8, false, useGpu);
  inputPriorBox = Matrix::create(1, 32, false, useGpu);
  inputLoc->copyFrom(inputLocData, 16);
  inputConf->copyFrom(inputConfData, 8);
  inputPriorBox->copyFrom(inputPriorBoxData, 32);

  nmsTreshold = 0.01;
  result3 = Matrix::create(1, 7, false, useGpu);
  result3->copyFrom(resultData, 7);
  doOneDetectionOutputTest(inputLoc,
                           inputConf,
                           inputPriorBox,
                           /* feature_map_width */ 1,
                           /* feature_map_height */ 1,
                           nmsTreshold,
                           useGpu,
                           result3);

  // GPU case 2.
  nmsTreshold = 0.2;
  result4 = Matrix::create(2, 7, false, useGpu);
  result4->copyFrom(resultData2, 14);
  doOneDetectionOutputTest(inputLoc,
                           inputConf,
                           inputPriorBox,
                           /* feature_map_width */ 1,
                           /* feature_map_height */ 1,
                           nmsTreshold,
                           useGpu,
                           result4);
#endif
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  return RUN_ALL_TESTS();
}