test_model.py 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
28
from paddle.nn import Conv2d, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35 36 37
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
38 39
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
40 41


42
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
43
    def __init__(self, num_classes=10):
44 45 46
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
47
            Conv2d(
48
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
49
            ReLU(),
50
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
51
            Conv2d(
52
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
53
            ReLU(),
54
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
55 56 57

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
58
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
101
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
128
        cls.device = paddle.set_device('gpu')
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
L
Leo Chen 已提交
145 146
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
147 148 149 150 151 152 153

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

154 155
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

173 174 175 176 177 178
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

194
    def fit(self, dynamic, num_replicas=None, rank=None):
195 196
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
L
Leo Chen 已提交
197 198
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
199

L
LielinJiang 已提交
200
        net = LeNet()
201
        optim_new = fluid.optimizer.Adam(
202 203
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
204 205
        model.prepare(
            optim_new,
206
            loss=CrossEntropyLoss(reduction="sum"),
207
            metrics=Accuracy())
208 209 210 211 212 213
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
214 215 216 217 218
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
219
        val_sampler = DistributedBatchSampler(
220 221 222 223 224
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
243 244
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
264 265
        model = Model(LeNet(), self.inputs)
        model.prepare()
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


288
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
289
    def __init__(self):
290
        super(MyModel, self).__init__()
291
        self._fc = Linear(20, 10)
292 293 294 295 296 297 298 299

    def forward(self, x):
        y = self._fc(x)
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
L
Leo Chen 已提交
300 301
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
302 303 304 305 306 307 308 309 310

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
311
            m = MyModel()
312 313 314
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
315 316
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
317 318 319 320 321 322 323 324 325
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
326
            device = paddle.set_device('cpu')
327 328 329
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
330
            net = MyModel()
331
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
332
                                         parameter_list=net.parameters())
333

334 335
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
336
            model = Model(net, inputs, labels)
337
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
338 339 340 341
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

342
    def test_test_batch(self):
343 344 345 346 347 348 349 350
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
351
            output = m(to_tensor(data))
352 353 354 355 356
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
357
            device = paddle.set_device('cpu')
358 359
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
360
            net = MyModel()
361
            inputs = [InputSpec([None, dim], 'float32', 'x')]
362 363
            model = Model(net, inputs)
            model.prepare()
364 365
            out, = model.test_batch([data])

366
            np.testing.assert_allclose(out, ref, rtol=1e-6)
367 368 369 370 371
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
372
            device = paddle.set_device('cpu')
373
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
374
            net = MyModel()
375 376
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
377
            optim = fluid.optimizer.SGD(learning_rate=0.001,
378 379
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
380
            model.prepare(
381
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
382 383 384 385 386
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

410 411
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
412
        # dynamic saving
413
        device = paddle.set_device('cpu')
414
        fluid.enable_dygraph(device)
415
        model = Model(MyModel())
416 417
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
418
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
419 420
        model.save(path + '/test')
        fluid.disable_dygraph()
421

422 423
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
424
        model = Model(MyModel(), inputs, labels)
425 426
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
427
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
428 429 430 431 432 433
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

L
LielinJiang 已提交
434
        net = MyModel()
435 436
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
437
        optim = fluid.optimizer.SGD(learning_rate=0.001,
438 439
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
440
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
441 442
        model.save(path + '/test')

443
        device = paddle.set_device('cpu')
444 445
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
446
        net = MyModel()
447 448
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
449
        optim = fluid.optimizer.SGD(learning_rate=0.001,
450 451
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
452
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
453 454 455 456 457 458
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
459
            device = paddle.set_device('cpu')
460
            fluid.enable_dygraph(device) if dynamic else None
461
            net = MyModel()
462
            inputs = [InputSpec([None, 20], 'float32', 'x')]
463 464
            model = Model(net, inputs)
            model.prepare()
465 466 467 468 469
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

490 491
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
492
            model.summary(input_size=(20), dtype='float32')
493

L
LielinJiang 已提交
494 495
    def test_summary_nlp(self):
        paddle.enable_static()
L
LielinJiang 已提交
496 497 498 499 500 501 502
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
        rnn = paddle.nn.LSTM(16, 32, 2)
        paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
L
LielinJiang 已提交
503

L
LielinJiang 已提交
504 505 506 507 508
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
509 510 511
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
512
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
513 514 515 516 517 518 519

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
520
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
521

522
    def test_export_deploy_model(self):
523 524
        self.set_seed()
        np.random.seed(2020)
525
        for dynamic in [True, False]:
526
            paddle.disable_static() if dynamic else None
527 528
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
529
            net = LeNet()
530
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
531 532 533 534 535 536 537
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
538

539
            model.save(save_dir, training=False)
540
            ori_results = model.test_batch(tensor_img)
541
            fluid.disable_dygraph() if dynamic else None
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
557
            paddle.enable_static()
558

L
LiuChiachi 已提交
559
    def test_dygraph_export_deploy_model_about_inputs(self):
560 561
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
562
        # without inputs
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        for initial in ["fit", "train_batch", "eval_batch", "test_batch"]:
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
                    model.test_batch([img])

            model.save(save_dir, training=False)
            shutil.rmtree(save_dir)
L
LiuChiachi 已提交
588 589 590 591 592 593 594 595 596 597 598 599
        # with inputs, and the type of inputs is InputSpec
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
600

601

602 603
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
604
        net = MyModel()
605

606 607
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
608 609 610
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
627

628

629 630
if __name__ == '__main__':
    unittest.main()