DepthwiseConvOp.cpp 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DepthwiseConvOp.h"
16
#include "ConvOp.h"
17 18 19 20 21 22 23
#include "GemmFunctor.h"

namespace paddle {

template <class T>
class DepthwiseConvFunctor<DEVICE_TYPE_CPU, T> {
public:
24
  void operator()(const T* inputData,
25 26 27 28 29
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
30
                  int inputChannels,
31 32
                  int inputHeight,
                  int inputWidth,
33
                  int filterMultiplier,
34 35 36 37 38 39 40
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* outputData) {
41
    // TODO(zhaolong) : cpu implementation of depthwise convolution
42 43 44 45 46 47
  }
};

template <class T>
class DepthwiseConvGradInputFunctor<DEVICE_TYPE_CPU, T> {
public:
48
  void operator()(const T* outputGrad,
49 50 51 52 53
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
54
                  int inputChannels,
55 56
                  int inputHeight,
                  int inputWidth,
57
                  int filterMultiplier,
58 59 60 61 62 63 64
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* inputGrad) {}
65
  // TODO(zhaolong) : cpu implementation of depthwise convolution
66 67 68 69 70
};

template <class T>
class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_CPU, T> {
public:
71
  void operator()(const T* outputGrad,
72 73 74 75 76
                  const T* inputData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
77
                  int inputChannels,
78 79
                  int inputHeight,
                  int inputWidth,
80
                  int filterMultiplier,
81 82 83 84 85 86 87 88
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* colData,
                  T* filterGrad) {}
89
  // TODO(zhaolong) : cpu implementation of depthwise convolution
90 91 92
};

/*
93
 * \brief Forward calculation of depthwise convolution.
94 95 96 97 98 99 100 101
 */
template <DeviceType Device>
class DepthwiseConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

X
xzl 已提交
102
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);

    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    size_t batchSize = input[0];
119
    size_t inputChannels = input[1];
120 121
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
122 123 124 125 126
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
127
    size_t filterMultiplier = outputChannels / groups_;
128 129 130 131 132 133

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

    DepthwiseConvFunctor<Device, real> depthwiseConv;
134
    depthwiseConv(inputData,
135 136 137 138 139
                  filterData,
                  batchSize,
                  outputChannels,
                  outputHeight,
                  outputWidth,
140
                  inputChannels,
141 142
                  inputHeight,
                  inputWidth,
143
                  filterMultiplier,
144 145 146 147 148 149 150 151 152 153 154
                  filterHeight,
                  filterWidth,
                  strideH(),
                  strideW(),
                  paddingH(),
                  paddingW(),
                  outputData);
  }
};

/*
155
 * \brief Backward input calculation of depthwise convolution.
156 157 158 159 160 161 162 163
 */
template <DeviceType Device>
class DepthwiseConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

X
xzl 已提交
164
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
189
    size_t filterMultiplier = outputChannels / groups_;
190 191 192 193 194 195

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();

    DepthwiseConvGradInputFunctor<Device, real> depthwiseConvGradInput;
196
    depthwiseConvGradInput(outputGrad,
197 198 199 200 201
                           filterData,
                           batchSize,
                           outputChannels,
                           outputHeight,
                           outputWidth,
202
                           inputChannels,
203 204
                           inputHeight,
                           inputWidth,
205
                           filterMultiplier,
206 207 208 209 210 211 212 213 214 215 216
                           filterHeight,
                           filterWidth,
                           strideH(),
                           strideW(),
                           paddingH(),
                           paddingW(),
                           inputGrad);
  }
};

/*
217
 * \brief Backward filter calculation of depthwise convolution.
218 219 220 221 222 223 224 225
 */
template <DeviceType Device>
class DepthwiseConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

X
xzl 已提交
226
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
227 228 229 230 231 232 233
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
234 235
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
236 237 238 239 240 241 242 243 244 245 246 247 248 249
    check(inputs, outputs);
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
250
    size_t filterMultiplier = outputChannels / groups_;
251 252 253 254 255

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();

256 257
    int size = outputChannels * filterHeight * filterWidth * outputHeight *
               outputWidth;
258 259 260 261 262
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    DepthwiseConvGradFilterFunctor<Device, real> depthwiseConvGradFilter;

263 264 265 266 267 268 269 270 271
    depthwiseConvGradFilter(outputGrad,
                            inputData,
                            batchSize,
                            outputChannels,
                            outputHeight,
                            outputWidth,
                            inputChannels,
                            inputHeight,
                            inputWidth,
272
                            filterMultiplier,
273 274 275 276 277 278 279 280
                            filterHeight,
                            filterWidth,
                            strideH(),
                            strideW(),
                            paddingH(),
                            paddingW(),
                            colData,
                            filterGrad);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  }
};

REGISTER_TYPED_FUNC(DepthwiseConv, CPU, DepthwiseConvFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
                    CPU,
                    DepthwiseConvGradInputFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
                    CPU,
                    DepthwiseConvGradFilterFunction);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(DepthwiseConv, GPU, DepthwiseConvFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
                    GPU,
                    DepthwiseConvGradInputFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
                    GPU,
                    DepthwiseConvGradFilterFunction);
#endif

}  // namespace paddle