einsum_impl.h 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

16
#include <set>
17 18 19 20 21 22 23
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/utils/string/string_helper.h"

namespace phi {
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// check the validation of the Einsum equation.
// 1. the label must between 'a' - 'z'.
// 2. the dim of the same label must be same.
// 3. the broad cast dims in two operands is broadcastable.
// 4. there must exist '->' and the default output is complete in python.
// may be we can skip validation check in C++ and just put it in python.
inline static void ValidationCheck(const std::string& equation) {
  auto n_part = paddle::string::split_string(equation, "->").size();
  PADDLE_ENFORCE_EQ(n_part,
                    2,
                    phi::errors::InvalidArgument(
                        "Required at least one `->` in equation of EinsumOp."));
  size_t pos;
  auto trimed_equ = equation;
  if ((pos = trimed_equ.find("->", 0)) != std::string::npos) {
    trimed_equ.replace(pos, 2, ".");
  }
  auto is_valid_char = [](char c) {
    if (c >= 'a' && c <= 'z') return true;
    if (c == '.' || c == ',') return true;
    return false;
  };
  for (auto c : trimed_equ) {
    if (!is_valid_char(c))
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Found invalid char in equation. Einsum only accept `a`-`z` and `...`"
          "but get:`%c`",
          c));
  }
}

enum LabelType {
  ALL_TYPE = 0,
  Batch = 1,    // ABO
59 60
  AO,           // AO --  free label
  BO,           // BO --  free label
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  Contraction,  // AB
  Reduction,    // A, B
};

// map a label('a' - 'z') -> int, O(1) speed.
class LabelMap {
  constexpr static int N =
      26 + 1;  // 'a' - 'z' + '.', '.' is for broadcast dims
  int default_value;
  int map[N];

 public:
  explicit LabelMap(int default_value = 0) {
    this->default_value = default_value;
    for (int i = 0; i < N; ++i) map[i] = default_value;
  }
  int& operator[](int label) {
    int i = label - 'a';
    if (label == '.') i = N - 1;
    return map[i];
  }
  int operator[](int label) const {
    int i = label - 'a';
    if (label == '.') i = N - 1;
    return map[i];
  }
  // non-exist is present by is_default
  bool is_default(char label) {
    return (*this)[static_cast<int>(label)] == default_value;
  }
};

inline std::string label_to_string(const std::vector<char>& all_labels,
                                   const LabelMap& label2type) {
  std::string str;
  for (int a : all_labels) {
    std::stringstream ss;
    ss << label2type[a];
    str += ss.str();
  }
  return str;
}

inline static void ReplaceEllipsis(std::string& s) {  // NOLINT
  size_t pos;
  if ((pos = s.find("...", 0)) != std::string::npos) {
    s.replace(pos, 3, ".");
  }
  // remove all the space in the expression
  while ((pos = s.find(" ", 0)) != std::string::npos) {
    s.replace(pos, 1, "");
  }
}

inline std::vector<char> union_labels(const std::vector<char>& a,
                                      const std::vector<char>& b) {
  LabelMap counter(0);
  std::vector<char> res;
  auto f = [&](char c) {
    if (counter[static_cast<int>(c)] == 0) {
      res.push_back(c);
    }
    counter[static_cast<int>(c)] += 1;
  };
  std::for_each(a.begin(), a.end(), f);
  std::for_each(b.begin(), b.end(), f);
  return res;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Apply transforms to all_labels and get another all_labels
inline std::vector<char> TransformLabelsOrder(
    const std::vector<char>& all_labels,
    const LabelMap& type,
    std::vector<LabelType> new_order) {
  std::vector<char> ret;
  for (auto cnt_type : new_order) {
    std::vector<char> tmp;
    for (int c : all_labels) {
      if (type[c] == cnt_type) tmp.push_back(c);
      std::sort(tmp.begin(), tmp.end());
    }
    ret.insert(ret.end(), tmp.begin(), tmp.end());
  }
  return ret;
}

147 148 149 150 151 152 153 154
inline static void GlobalInfo(const std::vector<std::string>& op_labels,
                              const std::string& right,
                              LabelMap* label2type,
                              std::vector<char>* sorted_labels) {
  std::vector<char> all;
  LabelMap counter(0);
  for (auto& ch : right) {  // char
    int c = ch;
155
    (*label2type)[c] = LabelType::BO;
156 157 158 159 160 161 162 163 164
  }

  for (auto& op : op_labels) {
    for (auto& ch : op) {  // char
      int c = ch;
      if (counter.is_default(c)) {
        all.push_back(ch);
      }
      counter[c] += 1;
165
      if ((*label2type)[c] != LabelType::BO && counter[c] == 2)
166 167 168 169 170
        (*label2type)[c] = LabelType::Contraction;
      else if (counter[c] == 2)
        (*label2type)[c] = LabelType::Batch;
    }
  }
171 172 173 174 175 176

  // BO is represent Free, so we need find the AO.
  for (int c : op_labels[0]) {
    if ((*label2type)[c] == LabelType::BO) (*label2type)[c] = LabelType::AO;
  }

177
  (*label2type)['.'] = LabelType::Batch;
178 179 180 181 182 183 184 185 186

  *sorted_labels = TransformLabelsOrder(all,
                                        *label2type,
                                        {LabelType::Batch,
                                         LabelType::AO,
                                         LabelType::BO,
                                         LabelType::Contraction,
                                         LabelType::Reduction});

187 188 189 190 191 192
  if (counter[static_cast<int>('.')] > 0) {
    std::vector<char> tmp;
    tmp.push_back('.');
    // push '.' in the front
    *sorted_labels = union_labels(tmp, *sorted_labels);
  }
193 194
  VLOG(5) << "GlobalInfo: sorted_labels after: "
          << paddle::string::join_strings(*sorted_labels, ",");
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
}

inline static void InferLabelShape(const std::vector<std::string>& op_labels,
                                   const std::vector<DDim>& inputs,
                                   LabelMap* labelshape,
                                   std::vector<std::vector<int>>* ellipsis_dims,
                                   std::vector<int>* broadcast_dims) {
  VLOG(5) << "Start InferLabelShape";
  int n_broadcast_dims = 0;
  for (size_t i = 0; i < op_labels.size(); ++i) {
    VLOG(5) << "oplabels: " << op_labels[i];
    int valid_indices = std::count_if(op_labels[i].begin(),
                                      op_labels[i].end(),
                                      [](char c) { return c != '.'; });
    int n_ellipsis = inputs[i].size() - valid_indices;
    VLOG(5) << "valid indices and n_ellipsis: " << valid_indices << " "
            << n_ellipsis;
    ellipsis_dims->at(i).resize(n_ellipsis);
    n_broadcast_dims = std::max(n_broadcast_dims, n_ellipsis);
  }
  VLOG(5) << "InferLabelShape: Broadcast ndims:" << n_broadcast_dims;
  *broadcast_dims = std::vector<int>(n_broadcast_dims, 1);

  for (size_t i = 0; i < op_labels.size(); ++i) {
    auto& op_str = op_labels[i];
    auto& op_dim = inputs[i];
    int dim_ptr = 0;
    for (int c : op_str) {
      if (c == '.') {
        for (auto& v : ellipsis_dims->at(i)) {
          v = op_dim[dim_ptr];
          dim_ptr++;
        }
      } else if (labelshape->is_default(c) || (*labelshape)[c] == -1) {
        (*labelshape)[c] = op_dim[dim_ptr];
        dim_ptr++;
      } else {
        PADDLE_ENFORCE_EQ(
            (*labelshape)[c],
            op_dim[dim_ptr],
            phi::errors::InvalidArgument(
                "Same label have different shapes for label: `%c`", c));
        dim_ptr++;
      }
    }
  }
  for (size_t i = 0; i < op_labels.size(); ++i) {
    VLOG(5) << "InferLabelShape: Ellipsis ndims:"
            << paddle::string::join_strings(ellipsis_dims->at(i), ",");
    int idx = n_broadcast_dims - ellipsis_dims->at(i).size();
    for (auto v : ellipsis_dims->at(i)) {
      PADDLE_ENFORCE_EQ(
          v == 1 || broadcast_dims->at(idx) == 1 ||
              broadcast_dims->at(idx) == v,
          true,
          phi::errors::InvalidArgument(
              "Ellipsis dims can't broadcasts. Please Check you operands."));
      broadcast_dims->at(idx) = std::max(v, broadcast_dims->at(idx));
      idx += 1;
    }
  }
  VLOG(5) << "InferLabelShape: Broadcast dims:"
          << paddle::string::join_strings(*broadcast_dims, ",");
}

inline static void InferLabelPerm(const std::string& op,
                                  int n_broadcast,
                                  LabelMap* label2perm) {
  int cur = 0;
  for (int c : op) {
    (*label2perm)[c] = cur;
    if (c == '.') {
      cur += n_broadcast;
    } else {
      cur += 1;
    }
  }
}

inline static void InferOutputDims(const std::string& right,
                                   const std::vector<int>& broadcast_dims,
                                   const LabelMap& labelshape,
                                   std::vector<int>* output_dims) {
  for (int c : right) {
    if (c == '.') {
      output_dims->insert(
          output_dims->end(), broadcast_dims.begin(), broadcast_dims.end());
    } else {
      output_dims->push_back(labelshape[c]);
    }
  }
}
//
inline static void ParseEinsumEquation(
    const std::string& equation,
    const std::vector<DDim>& inputs,
    LabelMap* labelshape,
    LabelMap* labeltype,
    std::vector<char>* all_labels,
    std::vector<LabelMap>* label2perms,
    std::vector<std::vector<int>>* ellipsis_dims,
    std::vector<int>* broadcast_dims,
    std::vector<int>* output_dims,
    std::string* right) {
  auto results = paddle::string::split_string(equation, "->");
  auto left = results[0];
  ReplaceEllipsis(left);
  *right = results[1].substr(1);
  ReplaceEllipsis(*right);
  auto op_labels = paddle::string::split_string(left, ",");
305 306
  // split_string("i,") -> ["i"], we expect 2 op_labels.
  if (left[left.size() - 1] == ',') op_labels.push_back("");
307 308 309
  std::for_each(op_labels.begin(), op_labels.end(), ReplaceEllipsis);
  GlobalInfo(op_labels, *right, labeltype, all_labels);
  InferLabelShape(op_labels, inputs, labelshape, ellipsis_dims, broadcast_dims);
310 311 312
  VLOG(5) << "Einsum Infershape: right:" << *right;
  VLOG(5) << "Einsum Infershape: left :"
          << paddle::string::join_strings(op_labels, '\n');
313 314 315 316 317
  InferOutputDims(*right, *broadcast_dims, *labelshape, output_dims);
  for (size_t i = 0; i < inputs.size(); ++i) {
    InferLabelPerm(
        op_labels[i], ellipsis_dims->at(i).size(), &((*label2perms)[i]));
  }
318
  VLOG(5) << "Einsum Infershape: end";
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
}

template <typename T>
std::vector<T> GetLabelIndexByType(const std::vector<char>& all_labels,
                                   const LabelMap& type,
                                   const LabelMap& perm,
                                   const std::vector<int>& ellipsis,
                                   LabelType filter) {
  std::vector<T> res;
  for (T c : all_labels) {
    if ((filter == LabelType::ALL_TYPE || type[c] == filter) && perm[c] != -1) {
      if (c == '.') {
        for (size_t i = 0; i < ellipsis.size(); ++i) res.push_back(perm[c] + i);
      } else {
        res.push_back(perm[c]);
      }
    }
  }
  return res;
}

template <typename T>
std::vector<T> GetShapeByType(const std::vector<char>& all_labels,
                              const LabelMap& type,
                              const LabelMap& perm,
                              const LabelMap& label2shape,
                              const std::vector<int>& ellipsis,
346
                              std::set<LabelType> filter) {
347 348
  std::vector<T> res;
  for (T c : all_labels) {
349 350 351
    if ((filter.count(LabelType::ALL_TYPE) ||
         filter.count(LabelType(type[c]))) &&
        perm[c] != -1) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
      if (c == '.')
        res.insert(res.end(), ellipsis.begin(), ellipsis.end());
      else
        res.push_back(label2shape[c]);
    }
  }
  return res;
}

template <typename T, typename Context>
DenseTensor PerformReduction(const Context& dev_ctx,
                             const DenseTensor& tensor,
                             const LabelMap& label2perm,
                             const std::vector<char>& all_labels,
                             const std::vector<int>& ellipsis,
                             const LabelMap& label2type) {
  auto indices = GetLabelIndexByType<int64_t>(
      all_labels, label2type, label2perm, ellipsis, LabelType::Reduction);
  VLOG(5) << "call PerformReduction: with axis: "
          << paddle::string::join_strings(indices, ",");
  if (indices.size() == 0) return tensor;
  return Sum<T, Context>(dev_ctx, tensor, indices, tensor.dtype(), true);
}

376 377 378 379 380 381 382
inline bool is_no_need_transpose(const std::vector<int>& axis) {
  for (size_t i = 0; i < axis.size(); ++i) {
    if (i != static_cast<size_t>(axis[i])) return false;
  }
  return true;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
template <typename T, typename Context>
DenseTensor PerformTranspose(const Context& dev_ctx,
                             const DenseTensor& tensor,
                             const LabelMap& label2perm,
                             const std::vector<char>& all_labels,
                             const std::vector<int>& ellipsis,
                             const LabelMap& label2type) {
  auto axis = GetLabelIndexByType<int>(
      all_labels, label2type, label2perm, ellipsis, LabelType::ALL_TYPE);
  VLOG(5) << "PerformTranspose: " << paddle::string::join_strings(axis, ",");
  if (is_no_need_transpose(axis)) {
    return tensor;
  }
  auto ret = Transpose<T, Context>(dev_ctx, tensor, axis);
  VLOG(5) << "PerformTranspose: do_transpose()";
  return ret;
}

template <typename T, typename Context>
DenseTensor PerformContraction(
    const Context& dev_ctx,
    const DenseTensor& A,
    const DenseTensor& B,
    const std::vector<LabelMap>& label2perm,
    const std::vector<char>& all_labels,
    const LabelMap& label2type,
    const LabelMap& label2shape,
    const std::vector<std::vector<int>>& ellipsis_dims,
411 412
    const std::vector<int>& broadcast_dims,
    std::vector<DenseTensor*> cache) {
413 414 415 416 417 418 419
  // Get All the Batches, so perm is
  auto all_valid = LabelMap(1);
  auto recover_dim = GetShapeByType<int>(all_labels,
                                         label2type,
                                         all_valid,
                                         label2shape,
                                         broadcast_dims,
420
                                         {LabelType::Batch});
421 422
  auto preprocess = [&](const DenseTensor& t,
                        const LabelMap& perm,
423 424 425 426 427 428 429 430 431
                        const std::vector<int>& ellipsis,
                        int operand_idx) -> DenseTensor {
    // reshape
    auto frees = GetShapeByType<int>(all_labels,
                                     label2type,
                                     perm,
                                     label2shape,
                                     ellipsis,
                                     {LabelType::AO, LabelType::BO});
432 433 434 435 436
    auto conts = GetShapeByType<int>(all_labels,
                                     label2type,
                                     perm,
                                     label2shape,
                                     ellipsis,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
                                     {LabelType::Contraction});
    std::vector<char> reordered_all_labels = all_labels;
    if (operand_idx == 1) {
      reordered_all_labels = TransformLabelsOrder(all_labels,
                                                  label2type,
                                                  {LabelType::Batch,
                                                   LabelType::Contraction,
                                                   LabelType::AO,
                                                   LabelType::BO,
                                                   LabelType::Reduction});
    }
    // reduction
    DenseTensor trans_t;
    if (cache[operand_idx]->IsInitialized()) {
      trans_t.ShareBufferWith(*(cache[operand_idx]));
    } else {
      auto reduct_t = PerformReduction<T, Context>(
          dev_ctx, t, perm, all_labels, ellipsis, label2type);
      trans_t = PerformTranspose<T, Context>(
          dev_ctx, reduct_t, perm, reordered_all_labels, ellipsis, label2type);
      cache[operand_idx]->ShareBufferWith(trans_t);
    }
    auto mul_dims = GetShapeByType<int>(all_labels,
                                        label2type,
                                        perm,
                                        label2shape,
                                        ellipsis,
                                        {LabelType::Batch});
465
    recover_dim.insert(recover_dim.end(), frees.begin(), frees.end());
466 467 468 469 470 471 472 473 474 475 476
    if (operand_idx == 0) {
      mul_dims.push_back(std::accumulate(
          frees.begin(), frees.end(), 1, std::multiplies<int>()));
      mul_dims.push_back(std::accumulate(
          conts.begin(), conts.end(), 1, std::multiplies<int>()));
    } else {
      mul_dims.push_back(std::accumulate(
          conts.begin(), conts.end(), 1, std::multiplies<int>()));
      mul_dims.push_back(std::accumulate(
          frees.begin(), frees.end(), 1, std::multiplies<int>()));
    }
477 478 479 480 481
    VLOG(5) << "PerformContraction: mul_dims: "
            << paddle::string::join_strings(mul_dims, ",");
    trans_t.Resize(make_ddim(mul_dims));
    return trans_t;
  };
482 483 484 485

  // Reduction, Reshape and Matmul
  auto trans_a = preprocess(A, label2perm[0], ellipsis_dims[0], 0);
  auto trans_b = preprocess(B, label2perm[1], ellipsis_dims[1], 1);
486
  auto after_contraction =
487
      Matmul<T, Context>(dev_ctx, trans_a, trans_b, false, false);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  VLOG(5) << "PerformContraction: recover_dim: "
          << paddle::string::join_strings(recover_dim, ",");
  after_contraction.Resize(make_ddim(recover_dim));
  return after_contraction;
}

template <typename T, typename Context>
void TransposeToOutput(const Context& dev_ctx,
                       const DenseTensor& to_trans,
                       const std::string& right,
                       const std::vector<char>& all_labels,
                       int n_broadcast_dims,
                       DenseTensor* output) {
  std::vector<int> axis;
  int offset = 0;
  if (std::find(all_labels.begin(), all_labels.end(), '.') !=
      all_labels.end()) {
    offset = n_broadcast_dims - 1;
  }
  for (char c : right) {
    if (c == '.') {
      for (int i = 0; i < n_broadcast_dims; ++i) axis.push_back(i);
    } else {
      auto it = std::find(all_labels.begin(), all_labels.end(), c);
      PADDLE_ENFORCE_NE(it,
                        all_labels.end(),
                        phi::errors::InvalidArgument("Must in all_labels."));
      axis.push_back(it - all_labels.begin() + offset);
    }
  }
518
  if (is_no_need_transpose(axis)) return output->ShareBufferWith(to_trans);
519 520 521 522 523 524
  VLOG(5) << "call TransposeToOutput: with axis: "
          << paddle::string::join_strings(axis, ",");
  return TransposeKernel<T, Context>(dev_ctx, to_trans, axis, output);
}

template <typename T, typename Context>
525 526 527 528 529
void EinsumKernelImpl(const Context& dev_ctx,
                      const std::vector<const DenseTensor*>& inputs,
                      const std::string& equation,
                      DenseTensor* out,
                      std::vector<DenseTensor*> cache) {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  ValidationCheck(equation);
  // collect the following informations to prepare einsum.
  LabelMap labelshape(0);
  LabelMap labeltype(LabelType::Reduction);
  std::vector<LabelMap> label2perms(inputs.size(), LabelMap(-1));
  std::vector<char> all_labels;  // order: ABO, AO, BO, AB, Reduce
  std::vector<std::vector<int>> ellipsis_dims(2);
  std::vector<int> broadcast_dims;
  std::vector<int> output_dims;

  std::vector<DDim> input_dims;
  for (auto& i : inputs) {
    input_dims.push_back(i->dims());
  }
  std::string right;
  ParseEinsumEquation(equation,
                      input_dims,
                      &labelshape,
                      &labeltype,
                      &all_labels,
                      &label2perms,
                      &ellipsis_dims,
                      &broadcast_dims,
                      &output_dims,
                      &right);
  out->Resize(make_ddim(output_dims));
  if (inputs.size() == 2) {
    auto& A = inputs[0];
    auto& B = inputs[1];
559
    // Reduction and Contract Procedure
560 561
    dev_ctx.template Alloc<T>(out);
    auto after_contraction = PerformContraction<T, Context>(dev_ctx,
562 563
                                                            *A,
                                                            *B,
564 565 566 567 568
                                                            label2perms,
                                                            all_labels,
                                                            labeltype,
                                                            labelshape,
                                                            ellipsis_dims,
569 570
                                                            broadcast_dims,
                                                            cache);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    TransposeToOutput<T, Context>(dev_ctx,
                                  after_contraction,
                                  right,
                                  all_labels,
                                  broadcast_dims.size(),
                                  out);
    // Reshape Procedure
  } else if (inputs.size() == 1) {
    auto reduce_A = PerformReduction<T, Context>(dev_ctx,
                                                 *inputs[0],
                                                 label2perms[0],
                                                 all_labels,
                                                 ellipsis_dims[0],
                                                 labeltype);
    std::vector<char> right_labels;
    for (auto c : right) right_labels.push_back(c);
    right_labels = union_labels(right_labels, all_labels);
    *out = PerformTranspose<T, Context>(dev_ctx,
                                        reduce_A,
                                        label2perms[0],
                                        right_labels,
                                        broadcast_dims,
                                        labeltype);
    out->Resize(make_ddim(output_dims));
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "EinsumOp kernel only support len(operands) between (0, 2]. Use "
        "opt_einsum first to convert multi-variable to binary-variable."));
  }
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615
template <typename T, typename Context>
void EinsumKernel(const Context& dev_ctx,
                  const std::vector<const DenseTensor*>& inputs,
                  const std::string& equation,
                  DenseTensor* out) {
  std::vector<DenseTensor> cache(inputs.size());  // set empty; TA, TB, TdC
  std::vector<DenseTensor*> cache_tensor(
      inputs.size());  // set empty; TA, TB, TdC
  for (size_t i = 0; i < inputs.size(); ++i) {
    cache_tensor[i] = &cache[i];
  }
  EinsumKernelImpl<T, Context>(dev_ctx, inputs, equation, out, cache_tensor);
}

616
}  // namespace phi