test_imperative.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import sys
X
Xin Pan 已提交
16
import contextlib
17 18 19 20 21
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
X
Xin Pan 已提交
22 23 24 25 26 27 28 29 30 31 32
from paddle.fluid.layers.nn import FC


@contextlib.contextmanager
def new_program_scope():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield
33 34 35 36 37 38 39 40 41


class MyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
        x = fluid.layers.relu(inputs[0])
        self._x_for_debug = x
X
Xin Pan 已提交
42 43 44
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
45 46


X
Xin Pan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class MLP(fluid.imperative.PyLayer):
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs[0])
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


64 65 66 67 68 69 70 71 72
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
            l = fluid.imperative.PyLayer()
            l.forward([])

    def test_layer_in_out(self):
X
Xin Pan 已提交
73
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
74 75
        with fluid.imperative.guard():
            l = MyLayer()
X
Xin Pan 已提交
76
            x = l(np_inp)[0]
77
            self.assertIsNotNone(x)
X
Xin Pan 已提交
78
            dy_out = x._numpy()
79
            x._backward()
X
Xin Pan 已提交
80 81 82 83 84
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
X
Xin Pan 已提交
85 86 87 88
            x = fluid.layers.relu(inp)
            x_for_debug = x
            x = fluid.layers.elementwise_mul(x, x)
            x = fluid.layers.reduce_sum(x)
X
Xin Pan 已提交
89
            param_grads = fluid.backward.append_backward(
X
Xin Pan 已提交
90
                x, parameter_list=[x_for_debug.name])[0]
X
Xin Pan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
            mlp = MLP()
            out = mlp(np_inp)
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
125 126 127 128


if __name__ == '__main__':
    unittest.main()