matmul_v2_mkldnn_op.cc 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
namespace {
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22 23 24 25 26 27 28 29 30
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;
using paddle::framework::vectorize;
using paddle::framework::make_ddim;
using paddle::framework::GradVarName;
31 32

template <typename T>
33
class MatMulV2MKLDNNHandler
34
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
35
 public:
36
  MatMulV2MKLDNNHandler(const mkldnn::engine engine,
37 38
                        paddle::platform::Place cpu_place,
                        const std::vector<int64_t>& x_org_dims, bool trans_x,
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                        const std::vector<int64_t>& y_org_dims, bool trans_y)
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!trans_x) {
      x_strides.insert(x_strides.end(), {M * K, K, 1});
    } else {
      x_strides.insert(x_strides.end(), {M * K, 1, M});
    }
71

72 73 74 75 76
    if (!trans_y) {
      y_strides.insert(y_strides.end(), {N * K, N, 1});
    } else {
      y_strides.insert(y_strides.end(), {N * K, 1, K});
    }
77

78 79 80
    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});
81

82 83 84 85 86 87
    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }
88

89 90 91
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);
92

93
    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
94 95 96 97 98
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
99
                                            to_void_cast<T>(input_data));
100 101 102 103
  }
};

template <typename T>
104 105
class MatMulV2MKLDNNKernel
    : public paddle::operators::MatMulGradMKLDNNKernel<T> {
106 107 108
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }

109 110 111 112 113 114 115 116 117
 protected:
  void ExecuteMatMul(const ExecutionContext& ctx,
                     const MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine onednn_engine,
                     paddle::platform::Place cpu_place, const Tensor* x,
                     std::vector<int64_t>& x_dims, bool trans_x,
                     const Tensor* y, std::vector<int64_t>& y_dims,
                     bool trans_y, Tensor* out, std::vector<int64_t>& out_dims,
                     int execution_number = 0) const {
118 119
    MatMulV2MKLDNNHandler<T> handler(onednn_engine, ctx.GetPlace(), x_dims,
                                     trans_x, y_dims, trans_y);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    const auto src_memory_p = handler.AcquireSrcMemory(x);
    const auto weights_memory_p = handler.AcquireWeightsMemory(y);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_layout(paddle::framework::DataLayout::kMKLDNN);
    out->set_format(
        GetMKLDNNFormat(dst_memory_p->get_desc().reshape(out_dims)));
  }

141 142 143 144 145 146 147 148 149
 private:
  void CalculateMatrixDims(const ExecutionContext& ctx,
                           const std::vector<int64_t>& x_dims,
                           const std::vector<int64_t>& y_dims,
                           std::vector<int64_t>& x_bd_dims,
                           std::vector<int64_t>& y_bd_dims,
                           std::vector<int64_t>& out_dims, Tensor* out) const {
    if (x_dims.size() == 1) {
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[0];
150
    } else if (x_dims.size() == 2) {
J
jakpiase 已提交
151 152
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[1];
      x_bd_dims[x_bd_dims.size() - 2] = x_dims[0];
153 154 155 156 157 158 159
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
        x_bd_dims[i] = x_dims[i];
      }
    }
    if (y_dims.size() == 1) {
      y_bd_dims[x_bd_dims.size() - 2] = y_dims[0];
160
    } else if (y_dims.size() == 2) {
J
jakpiase 已提交
161 162
      y_bd_dims[y_bd_dims.size() - 1] = y_dims[1];
      y_bd_dims[y_bd_dims.size() - 2] = y_dims[0];
163 164 165 166 167 168 169 170 171 172
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
        y_bd_dims[i] = y_dims[i];
      }
    }

    if ((y_dims.size() == x_dims.size()) && y_dims.size() > 2) {
      for (size_t i = 0; i < x_dims.size() - 2; ++i) {
        PADDLE_ENFORCE_EQ(
            x_dims[i] == y_dims[i] || x_dims[i] == 1 || y_dims[i] == 1, true,
173
            paddle::platform::errors::InvalidArgument(
174 175 176 177 178 179
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
                i, x_dims[i], i, y_dims[i]));
        out_dims[i] = std::max(x_dims[i], y_dims[i]);
      }
180
      out->Resize(make_ddim(out_dims));
181 182 183 184 185 186 187 188 189 190 191 192 193
    }
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

194 195 196
    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());
    auto out_dims = vectorize(out->dims());
197 198 199 200 201 202 203 204 205 206

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims,
                        out);

207 208 209 210
    ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_bd_dims,
                  trans_x, y, y_bd_dims, trans_y, out, out_dims);
  }
};
211

212 213 214 215
template <typename T>
class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
 private:
  void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp,
                               Tensor* dy_tmp,
                               const std::vector<int64_t>& dx_dims,
                               const std::vector<int64_t>& dy_dims,
                               std::vector<int64_t>& dx_bd_dims,
                               std::vector<int64_t>& dy_bd_dims) const {
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
          dx_bd_dims[i] = dy_dims[i];
        } else {
          dy_bd_dims[i] = dx_dims[i];
        }
      }
    }
233

234 235 236 237 238 239 240 241 242 243 244 245
    dx_tmp->Resize(make_ddim(dx_bd_dims));
    dx_tmp->mutable_data<T>(ctx.GetPlace());
    dy_tmp->Resize(make_ddim(dy_bd_dims));
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

  void ReduceSumForMatmulGradOutput(const ExecutionContext& ctx,
                                    const MKLDNNDeviceContext& dev_ctx,
                                    const mkldnn::engine onednn_engine,
                                    const Tensor* dx_tmp, Tensor* dx,
                                    std::vector<int64_t> dx_dims) const {
    paddle::platform::ReductionMKLDNNHandler<T> handler(
246 247
        dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
        ctx.GetPlace(), dx_tmp, dx, dx_dims);
248 249 250 251 252 253

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
254 255

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
256 257 258
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
259
    astream.wait();
260
  }
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
      is_broadcast =
          !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2,
                      y_dims.cbegin());
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
      paddle::operators::MatMulGradMKLDNNKernel<T>::Compute(ctx);
      return;
    }

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(GradVarName("Y"));

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    auto dout_dims = vectorize(dout->dims());

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

    CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims,
                            dy_bd_dims);

    if (trans_x && trans_y) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y,
                          y_dims, true, dout, dout_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims,
                          2);
    } else if (trans_x) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y,
                          y_dims, false, dout, dout_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                          x_dims, false, dout, dout_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    } else if (trans_y) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, false, y, y_dims, false, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, true, x, x_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    } else {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, false, y, y_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                          x_dims, true, dout, dout_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    }

    if (x_dims != dx_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx,
                                   x_dims);
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy,
                                   y_dims);
    } else {
      *dy = std::move(dy_tmp);
    }

    dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dx->set_format(x->format());
    dy->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dy->set_format(y->format());
358 359
  }
};
360
}  // anonymous namespace
361 362 363
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace,
364 365
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>);
366

367 368 369
REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);