graph_pattern_detector.cc 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Q
Qiao Longfei 已提交
15
#include <array>
16 17 18 19
#include <string>
#include <vector>

#include "paddle/fluid/framework/ir/graph_helper.h"
20
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
21
#include "paddle/fluid/framework/ir/graph_traits.h"
22
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/string/pretty_log.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/string/printf.h"
27 28 29 30
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
31 32 33 34
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;

35 36
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
37
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
45
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
46 47 48 49
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
50
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
51 52 53 54 55 56
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

57
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
58
  auto *cur = nodes_.back().get();
59
  node_map_[name] = cur;
60 61 62
  return cur;
}

C
chengduo 已提交
63
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
64 65 66 67 68 69 70 71
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
72
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
73 74 75 76 77 78
  PADDLE_ENFORCE(a);
  PADDLE_ENFORCE(b);
  PADDLE_ENFORCE(a != b, "can't connect to the same nodes.");
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
79
void GraphPatternDetector::operator()(Graph *graph,
80
                                      GraphPatternDetector::handle_t handler) {
81 82 83 84
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

85 86 87
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
88
  ValidateByNodeRole(&subgraphs);
89

Y
Yan Chunwei 已提交
90
  if (subgraphs.empty()) return;
Y
Yan Chunwei 已提交
91
  PrettyLogEndl(Style::detail(), "---  detect %d subgraphs", subgraphs.size());
92
  int id = 0;
C
chengduo 已提交
93
  for (auto &g : subgraphs) {
L
luotao1 已提交
94
    VLOG(3) << "optimizing #" << id++ << " subgraph";
95 96 97 98
    handler(g, graph);
  }
}

C
chengduo 已提交
99
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
100
  VLOG(3) << "mark pdnodes in graph";
101 102
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
103 104
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
105
      if (pdnode->Tell(&node)) {
106
        VLOG(4) << "pdnode " << pdnode->name() << " marked";
107 108 109 110
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
111
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
112
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
113 114
    if (!pdnodes2nodes_.count(pdnode.get())) {
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
115
      // return false;
Y
Yan Chunwei 已提交
116 117
    }
  }
C
chengduo 已提交
118 119 120
  for (auto &item : pdnodes2nodes_) {
    for (auto &n : item.second) {
      GetMarkedNodes(const_cast<Graph *>(&graph)).insert(n);
Y
Yan Chunwei 已提交
121 122
    }
  }
123
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
124

125 126 127
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
128 129 130
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be droped.
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
131
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
132 133 134 135 136
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
137
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
138
            // Collect the inputs and outputs.
C
chengduo 已提交
139 140
            std::unordered_set<Node *> ios;
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
141 142 143 144
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
145
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
146
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
147
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
148 149 150 151
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
152
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161 162 163
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

164
struct HitGroup {
C
chengduo 已提交
165
  std::unordered_map<PDNode *, Node *> roles;
166

C
chengduo 已提交
167
  bool Match(Node *node, PDNode *pat) {
168 169 170 171
    if (nodes_.count(node)) {
      if (!roles.count(pat)) return false;
      return roles[pat] == node;
    }
172 173 174
    return !roles.count(pat) || roles.at(pat) == node;
  }

C
chengduo 已提交
175
  void Register(Node *node, PDNode *pat) {
176 177 178 179 180
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
C
chengduo 已提交
181
  std::unordered_set<Node *> nodes_;
182 183 184
};

// Tell whether Node a links to b.
C
chengduo 已提交
185 186
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
187 188 189 190 191 192 193
    if (b == node) {
      return true;
    }
  }
  return false;
}

194 195
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
196
  // Init empty subgraphs.
197
  std::vector<GraphPatternDetector::subgraph_t> result;
198
  std::vector<HitGroup> init_groups;
199 200
  std::array<std::vector<HitGroup>, 2> bi_records;
  // PADDLE_ENFORCE(!pattern_.edges().empty(), "At least one edge is needed");
C
chengduo 已提交
201
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
202
                                               : pattern_.edges().front().first;
203
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
204
  for (auto *node : pdnodes2nodes_[first_pnode]) {
205 206 207 208 209 210 211 212 213 214
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
215
  for (const auto &edge : pattern_.edges()) {
216
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
217
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
218 219
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
220 221
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
222
    cur_groups.clear();
223
    if (pre_groups.empty()) break;
224
    // source -> target
C
chengduo 已提交
225 226
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
Y
Yan Chunwei 已提交
227
        VLOG(8) << "check " << source->id() << " -- " << target->id();
228
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
229
        for (const auto &group : pre_groups) {
230 231 232 233 234 235 236 237 238 239 240 241 242
          HitGroup new_group = group;
          if (IsNodesLink(source, target) &&
              new_group.Match(source, edge.first)) {
            new_group.Register(source, edge.first);
            if (new_group.Match(target, edge.second)) {
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
243
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
244 245
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
Y
Yan Chunwei 已提交
246 247 248 249
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
      }
      VLOG(4) << "=========================================================";
    }
250 251
  }

C
chengduo 已提交
252
  for (auto &group : bi_records[step % 2]) {
253
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
254
    for (auto &role : group.roles) {
255 256 257 258 259 260 261
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

262 263
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
264
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
265
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
266
  if (subgraphs->empty()) return;
267
  std::vector<GraphPatternDetector::subgraph_t> result;
268 269

  std::unordered_set<size_t> set;
C
chengduo 已提交
270
  for (auto &g : *subgraphs) {
271
    size_t key = 0;
C
chengduo 已提交
272 273 274
    for (auto &item : g) {
      key ^= std::hash<void *>{}(item.first);
      key ^= std::hash<void *>{}(item.second);
275 276 277 278 279 280 281 282 283
    }
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

284
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
285
    std::vector<subgraph_t> *subgraphs) {
286
  std::vector<subgraph_t> result;
C
chengduo 已提交
287
  std::unordered_set<Node *> node_set;
288

C
chengduo 已提交
289
  for (const auto &subgraph : *subgraphs) {
290
    bool valid = true;
C
chengduo 已提交
291
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
292
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
293 294 295 296 297
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
298
      for (auto &item : subgraph) {
299 300 301 302 303 304 305 306
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

307 308 309 310 311
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
312 313
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
314 315 316 317 318
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
319
  for (const auto &edge : edges()) {
320 321 322 323
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
324 325
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
326 327 328 329 330
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
331
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
332
  // extend outlinks.
C
chengduo 已提交
333
  for (PDNode *x : others) {
334 335 336 337 338
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
339
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
340
  // extend outlinks.
C
chengduo 已提交
341
  for (PDNode *x : others) {
342 343 344 345 346
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
347 348
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
349 350
  return this;
}
C
chengduo 已提交
351 352 353

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
354 355 356 357
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
358 359 360 361 362 363 364 365

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
366 367
  return this;
}
C
chengduo 已提交
368 369

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
370
  assert_is_var();
C
chengduo 已提交
371
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
372 373
  return this;
}
C
chengduo 已提交
374 375

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
376
  assert_is_var();
C
chengduo 已提交
377
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
378 379
  return this;
}
C
chengduo 已提交
380 381 382

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
383 384
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
385 386
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
387 388 389
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
390 391 392 393 394
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
395 396 397

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
398
  assert_is_var();
C
chengduo 已提交
399 400
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
401 402 403
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
404 405 406 407 408
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
409 410

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
411
  assert_is_var();
C
chengduo 已提交
412 413
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
414 415 416 417 418 419 420 421 422
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
423 424

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
425
  assert_is_var();
C
chengduo 已提交
426 427
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
428 429 430 431 432 433 434 435 436
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
437 438

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
439
  assert_is_var();
C
chengduo 已提交
440 441
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
442 443 444 445 446 447 448 449
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
450 451 452

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
453 454 455 456
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
457
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
458
  assert_is_var();
C
chengduo 已提交
459 460
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
461 462 463 464 465 466 467 468
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
469 470 471

PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
472 473 474 475
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
476 477

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
478
  assert_is_op(op_type);
C
chengduo 已提交
479
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
480 481
  return this;
}
C
chengduo 已提交
482 483

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
484
  assert_is_op(op_type);
C
chengduo 已提交
485
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
486 487
  return this;
}
C
chengduo 已提交
488 489

PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
490 491 492 493
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
577 578 579 580 581 582
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
583 584

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
585 586 587 588 589
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Input(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
590 591

bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
592 593 594 595 596
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Output(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
597 598 599 600 601

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
602 603
  }

C
chengduo 已提交
604
  for (auto *node : graph->Nodes()) {
605 606
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
607
        it = const_cast<Node *>(node)->inputs.erase(it);
608
      } else {
609
        it++;
610
      }
611 612 613
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
614
        it = const_cast<Node *>(node)->outputs.erase(it);
615
      } else {
616
        it++;
617
      }
618 619 620
    }
  }
}
C
chengduo 已提交
621 622 623

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
624 625 626 627 628 629 630
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
                                     bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
                           ->assert_is_op_input("batch_norm", "Scale");
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Bias");
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Mean");
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("batch_norm", "Variance");

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("batch_norm");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("batch_norm", "MeanOut");

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "VarianceOut");

  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedMean");

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedVariance");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

C
chengduo 已提交
737 738
PDNode *patterns::ConvReLU::operator()(
    paddle::framework::ir::PDNode *conv_input) {
739 740
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
C
chengduo 已提交
741 742
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
743 744
  // Create variables
  // Filter
C
chengduo 已提交
745
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
746 747 748 749
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
C
chengduo 已提交
750
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
751 752 753 754
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("relu");
  // output
C
chengduo 已提交
755
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
756 757 758
                           ->AsOutput()
                           ->assert_is_op_output("relu");

759
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
760 761 762 763
  relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
764
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
Y
Yan Chunwei 已提交
765 766 767
                                 bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
768
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
769

C
chengduo 已提交
770
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
771 772 773 774
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
775
  auto *mul_out_var =
Y
Yan Chunwei 已提交
776 777 778 779 780 781 782 783 784 785
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

  if (!with_bias) {  // not with bias
    // Add links.
    mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
    return mul_out_var;

  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
786
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
787 788
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
789
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
790 791 792
                     ->assert_is_op_input("elementwise_add")
                     ->AsInput();

C
chengduo 已提交
793
    auto *fc_out = pattern->NewNode(Out_repr())
Y
Yan Chunwei 已提交
794 795 796 797 798 799
                       ->AsOutput()
                       ->assert_is_op_output("elementwise_add");

    mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var});
    elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
    return fc_out;
800 801
  }
}
T
tensor-tang 已提交
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
821
PDNode *patterns::LSTM::operator()(PDNode *x) {
822
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
823
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
824
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
825
  auto *arg__ =               \
Y
Yan Chunwei 已提交
826
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
827 828 829 830 831

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
832 833
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
834

Y
Yan Chunwei 已提交
835 836 837 838 839
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
840 841 842 843 844

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
845

C
chengduo 已提交
846
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
847
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
848
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
849
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
850
  auto *arg__ =               \
Y
Yan Chunwei 已提交
851
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
852

Y
Yan Chunwei 已提交
853
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
854 855
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
856
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
857 858
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
859
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
860
  // below are intermediate
Y
Yan Chunwei 已提交
861 862 863 864
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
865

T
tensor-tang 已提交
866 867 868 869
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
870 871 872 873 874
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

M
Michal Gallus 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
PDNode *patterns::ConvBias::operator()(
    paddle::framework::ir::PDNode *conv_input) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("elementwise_add");
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
990
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
991 992 993 994 995 996 997 998 999 1000 1001
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1002 1003 1004 1005
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1006
                       ->AsInput()
1007 1008 1009
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1010
                        ->AsInput()
1011 1012 1013
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1014
                        ->AsOutput()
1015 1016
                        ->assert_is_op_output("conv2d", "Output");

1017
  conv_op->LinksFrom({input_var, filter_var});
1018 1019 1020 1021 1022
  conv_op->LinksTo({output_var});

  return output_var;
}

1023
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var) {
1024 1025 1026
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1027
  x_var->assert_is_op_input("elementwise_add", "X");
1028

1029 1030 1031
  auto y_var = pattern->NewNode(elementwise_add_x_repr())
                   ->AsInput()
                   ->assert_is_op_input("elementwise_add", "Y");
1032 1033 1034 1035 1036

  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1037
  elementwise_add_op->LinksFrom({x_var, y_var});
1038 1039 1040 1041
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1042 1043 1044
}  // namespace ir
}  // namespace framework
}  // namespace paddle