smooth_l1_loss_op.cc 5.4 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/smooth_l1_loss_op.h"

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
Y
yangyaming 已提交
26 27
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Y must be initialized.");
Y
yangyaming 已提交
28 29 30 31

    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    PADDLE_ENFORCE_EQ(x->dims(), y->dims(),
Y
yangyaming 已提交
32
                      "The shape of X and Y must be the same.");
33
    PADDLE_ENFORCE_GE(x->dims().size(), 2,
Y
yangyaming 已提交
34
                      "The tensor rank of X must be at least 2.");
Y
yangyaming 已提交
35 36 37 38 39 40 41
    auto* inside_weight = ctx.Input<framework::Tensor>("InsideWeight");
    if (inside_weight) {
      auto* outside_weight = ctx.Input<framework::Tensor>("OutsideWeight");
      PADDLE_ENFORCE_NOT_NULL(outside_weight,
                              "If weights are provided, must specify both "
                              "inside and outside weights.");
      PADDLE_ENFORCE_EQ(inside_weight->dims(), x->dims(),
Y
yangyaming 已提交
42 43 44
                        "The shape of InsideWeight must be same as X.");
      PADDLE_ENFORCE_EQ(outside_weight->dims(), x->dims(),
                        "The shape of OutsideWeight must be same as X.");
Y
yangyaming 已提交
45 46
    }

47 48
    auto* diff = ctx.Output<framework::LoDTensor>("Diff");
    auto* out = ctx.Output<framework::LoDTensor>("Out");
Y
yangyaming 已提交
49 50 51 52 53 54 55 56 57 58 59 60
    diff->Resize(x->dims());
    // loss is a two-rank tensor
    out->Resize({x->dims()[0], 1});
  }
};

template <typename AttrType>
class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SmoothL1LossOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
yangyaming 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    AddInput("X",
             "The input tensor of smooth l1 loss op."
             "The rank should be greater or equal to 2 with shape "
             "[batch_size, value_dim1, value_dim2, ..., value_dimN]");
    AddInput("Y",
             "The target tensor of smooth l1 loss op "
             "with the same shape as X.");
    AddInput("InsideWeight",
             "Optional input tensor of smooth l1 loss op with the same shape "
             "as X. If provided, the result of (X - Y) will be multiplied "
             "by this tensor element by element.");
    AddInput("OutsideWeight",
             "Optinal input of smooth l1 loss op with the same shape as X."
             "If provided, the output smooth l1 loss will be multiplied by "
             "this tensor element by element.");
    AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).")
Y
yangyaming 已提交
77
        .AsIntermediate();
Y
yangyaming 已提交
78 79 80 81
    AddOutput("Out", "Smooth l1 loss.");
    AddAttr<AttrType>("sigma",
                      "Hyper parameter of smooth l1 loss op."
                      "A float scalar with default value 3.0.")
Y
yangyaming 已提交
82
        .SetDefault(3.0);
Y
yangyaming 已提交
83
    AddComment(R"DOC(
Y
yangyaming 已提交
84 85 86 87
Compute smooth l1 loss for input and target. The operator take the 1st
dimension of input as batch size. For each instance, it will compute
smooth l1 loss element by element first and sum all losses to one value.
So the output shape is [batch_size, 1].
88

Y
yangyaming 已提交
89
The equation is:
Y
yangyaming 已提交
90 91
loss = 0.5 * (sigma * (x-y))^2    if abs(x - y) < 1 / sigma^2
       abs(x - y) - 0.5 / sigma^2 otherwise
92

Y
yangyaming 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    auto in_dims = ctx.Input<framework::Tensor>("X")->dims();
    auto out_dims =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->dims();
106 107 108 109
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto* y_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
Y
yangyaming 已提交
110

111
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
112
                      "The tensor rank of Input(Out@Grad) should be 2.");
Y
yangyaming 已提交
113
    PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
Y
yangyaming 已提交
114 115
                      "The 1st dimension of Input(Out@Grad) must be "
                      "same as input.");
Y
yangyaming 已提交
116
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
Y
yangyaming 已提交
117
                      "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
118 119 120 121 122 123 124 125 126 127 128

    if (x_grad) x_grad->Resize(in_dims);
    if (y_grad) y_grad->Resize(in_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp,
Y
yangyaming 已提交
129 130
            ops::SmoothL1LossOpMaker<float>, smooth_l1_loss_grad,
            ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
131 132 133 134 135
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss, ops::SmoothL1LossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
    ops::SmoothL1LossGradKernel<paddle::platform::CPUPlace, float>);