test_mean_op.py 4.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

L
liaogang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
C
chengduo 已提交
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
L
liaogang 已提交
24 25


Q
qijun 已提交
26
class TestMeanOp(OpTest):
L
liaogang 已提交
27
    def setUp(self):
Q
qijun 已提交
28
        self.op_type = "mean"
29
        self.dtype = np.float64
C
chengduo 已提交
30 31
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
32
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
33

C
chengduo 已提交
34 35 36
    def init_dtype_type(self):
        pass

Q
qijun 已提交
37 38
    def test_check_output(self):
        self.check_output()
L
liaogang 已提交
39

Q
qijun 已提交
40 41
    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out')
42 43


44
class TestMeanOpError(unittest.TestCase):
45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.mean, input1)
            # The input dtype of mean_op must be float16, float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.mean, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[4], dtype="float16")
            fluid.layers.softmax(input3)


C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-3)

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=0.8)


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class TestMeanAPI(unittest.TestCase):
    """
    test paddle.tensor.stat.mean
    """

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_shape)
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.mean(self.x)
        for out in res:
            self.assertEqual(np.allclose(out, out_ref), True)

    def test_api_imperative(self):
        def test_case(x, axis=None, keepdim=False):
            x_tensor = paddle.to_variable(x)
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
            self.assertEqual(np.allclose(out.numpy(), out_ref), True)

        paddle.disable_static(self.place)
        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12], 'int8')
            self.assertRaises(TypeError, paddle.mean, x)


Q
qijun 已提交
133
if __name__ == "__main__":
L
liaogang 已提交
134
    unittest.main()