device_context.cc 24.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14

15
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
16
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/cuda_device_guard.h"
18
#endif
19

20 21
#include "glog/logging.h"

22 23 24 25 26
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
27
  if (size == 0) {
28 29
    return Alloc(place, size);
  }
30 31

  if (platform::is_gpu_place(place)) {
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
51 52
    return Alloc(place, size);
#else
53 54 55
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
56
#endif
57 58 59
  } else {
    return Alloc(place, size);
  }
60 61 62 63 64
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
65 66 67
namespace paddle {
namespace platform {

68
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
69 70 71
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
72 73 74 75

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
76 77
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
78 79
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
80
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
81
  VLOG(4) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
82 83
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
84 85
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
86 87
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
88
        place));
D
dzhwinter 已提交
89
  }
90
  return it->second.get().get();
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100 101
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
102
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
103
                   }));
C
chengduozh 已提交
104 105
}

D
dzhwinter 已提交
106 107
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
108 109 110 111 112
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
113
  std::set<Place> set;
Y
Yu Yang 已提交
114 115 116 117 118
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
119
#ifdef PADDLE_WITH_MKLDNN
120
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
121
#else
122
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
123
#endif
Y
Yu Yang 已提交
124
    } else if (platform::is_gpu_place(p)) {
125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
126
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
127
#else
G
GaoWei8 已提交
128 129 130
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
131 132
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
134 135
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
136
#else
G
GaoWei8 已提交
137
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
138 139
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
140 141 142 143 144 145 146 147
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
148 149 150 151 152 153 154 155
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
D
dzhwinter 已提交
156 157 158 159 160
#endif
    }
  }
}

161 162 163 164
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
165
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
166 167 168 169 170 171 172
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
173
Place CPUDeviceContext::GetPlace() const { return place_; }
174

175 176 177
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

178
XPUDeviceContext::~XPUDeviceContext() {}
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
194 195 196

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

197
  context_ = xpu::create_context();
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
215
  }
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
232
  xpu_wait(context_->xpu_stream);
233 234 235 236 237 238 239
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
255

256 257 258 259 260 261 262 263 264 265 266 267 268
void NPUDeviceContext::Wait() const {
  NPUDeviceGuard guard(place_.device);
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeDevice());
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext NPUDeviceContext::context() const { return context_; }
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
269 270 271 272 273 274 275
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

276
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
277 278 279 280 281
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

282
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
283

284 285 286
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
287
  const cudaDeviceProp& deviceProperties() const override {
288
#endif
Q
init  
qijun 已提交
289 290 291 292
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
293 294 295
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
296 297 298
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
299
    void* retv = buf->ptr();
S
sneaxiy 已提交
300 301 302 303
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
304
    return retv;
Q
init  
qijun 已提交
305 306
  }

S
sneaxiy 已提交
307 308 309 310 311 312
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
313 314 315

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
316
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
317 318 319 320 321 322
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
323
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
324
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
325 326 327 328
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
329
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
330
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
331
#endif
Q
init  
qijun 已提交
332 333 334 335 336
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
337
  CUDAPlace place_;
338 339 340 341
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
342
  const cudaDeviceProp* device_prop_;  // not owned;
343
#endif
Q
qijun 已提交
344
  mutable void* scratch_;
Q
init  
qijun 已提交
345
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
346
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
347
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
348 349
};

350 351 352 353 354 355 356 357 358
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

359 360 361 362 363 364 365 366 367 368 369 370
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
371
                         const stream::Priority& priority) {
372 373 374 375 376 377
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
378
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
379
  InitCuSolverContext();
380
#endif
381 382 383 384 385 386
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
387
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
388
  DestoryCuSolverContext();
389
#endif
390 391
}

392
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
393
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
394 395 396
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
397
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
398
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
399

C
chengduo 已提交
400 401 402
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

403
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
404 405 406
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
407
                          << ", Driver API Version: " << driver_version_ / 1000
408
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
409 410 411
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
412 413 414 415 416 417 418 419
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
  PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
      &version_major, &version_minor, &version_patch));
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
420 421 422
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
423
                          << (cudnn_dso_ver % 1000) / 100 << ".";
424
#endif
S
sneaxiy 已提交
425 426
  {
    // Check CUDA/CUDNN version compatiblity
427 428
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
429 430 431
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
432 433
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
434
#endif
S
sneaxiy 已提交
435 436 437 438 439 440 441 442 443 444 445 446
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
447
  default_ctx_.reset(new CUDAContext(place_));
448 449 450 451
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
452
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
453 454 455 456
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
457 458
}

L
liaogang 已提交
459
Place CUDADeviceContext::GetPlace() const { return place_; }
460

461
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
462

K
Kexin Zhao 已提交
463
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
464
  return compute_capability_;
K
Kexin Zhao 已提交
465 466
}

467
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
468
  return multi_process_ * max_threads_per_mp_;
469 470
}

471 472 473 474 475 476
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

477
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
478
  return context()->EigenDevice().get();
479 480
}

481
bool CUDADeviceContext::tensor_core_available() const {
482
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
483 484
}

485 486 487 488
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

489 490 491
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
492
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
493
#endif
494 495
  return context()->CudnnHandle();
}
496

497 498 499 500 501
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
#else
502 503 504
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
505
#endif
506

S
sneaxiy 已提交
507
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
508
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
509
}
510

511
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
512 513 514
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
515
#endif
G
Guo Sheng 已提交
516

517
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
518

C
chengduoZH 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
533
#endif
Q
qijun 已提交
534

T
tensor-tang 已提交
535 536
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
537
    : CPUDeviceContext(place), p_blobmap_() {
538 539
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
540 541
}

542 543
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
544 545 546 547 548 549
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
  dev_ctx->ResetBlobMap();
}

565 566 567 568 569 570 571 572 573 574
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
575 576
  cur_input_shape_str = input_shape_str;
}
577 578
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
579 580
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
581

582 583
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
584 585 586
  cur_paddle_data_layout = dl;
}

587 588
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
589 590 591
  return cur_paddle_data_layout;
}

592 593 594 595 596 597 598 599 600
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

601 602 603 604 605 606 607 608
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
624
}
625

626
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
627
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
628
  BlobMap* pMap = p_blobmap_.get();
629
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
630
  if (map_it == pMap->end()) {
631 632 633
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
634 635 636 637
  }
  return map_it->second->size();
}

638
void MKLDNNDeviceContext::SetBlob(const std::string& name,
639
                                  BlobPtr_t<void> data) const {
640
  BlobMap* pMap = p_blobmap_.get();
641 642
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
643

644
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
645

646
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
647

648 649
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
650 651 652

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
653
    sBlob = std::make_shared<ShapeBlob>();
654 655
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
656
  } else {
657
    sBlob = map_it->second;
658
  }
T
tensor-tang 已提交
659

660
  // Find KeyBlob for current input shape
661
  auto key_it = sBlob->find(tls().cur_input_shape_str);
662

663
  if (key_it == sBlob->end()) {
664 665
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
666 667
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
668
        sBlob->size() &&
669
        (sBlob->size() >=
670
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
671 672 673 674
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
675 676
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
677
  } else {
678
    pBlob = key_it->second;
679 680
  }

681 682 683 684 685 686 687
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
688
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
689
  // lock will be automatically released when out of scope
690
  return;
T
tensor-tang 已提交
691 692
}

693 694 695 696 697 698 699 700 701 702
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

703
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
704
    const std::string& name) const {
705
  BlobMap* pMap = p_blobmap_.get();
706 707
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
708

709
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
710

711
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
712

713 714
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
715
  if (map_it == pMap->end()) {
716
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
717 718 719 720 721
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
722
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
723
  if (sBlob_it == sBlob->end()) {
724
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
725 726 727 728
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
729 730 731 732

  // Find Blob via name
  auto key_it = pBlob->find(name);

733
  if (key_it == pBlob->end()) {
734
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
735 736
    return nullptr;
  }
737

738
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
739 740
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
741 742 743
}

#endif
Q
qijun 已提交
744
}  // namespace platform
Q
qijun 已提交
745
}  // namespace paddle