test_bicubic_interp_op.py 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
24
from paddle.nn.functional import interpolate
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267


def cubic_1(x, a):
    return ((a + 2) * x - (a + 3)) * x * x + 1


def cubic_2(x, a):
    return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a


def cubic_interp1d(x0, x1, x2, x3, t):
    param = [0, 0, 0, 0]
    a = -0.75
    x_1 = t
    x_2 = 1.0 - t
    param[0] = cubic_2(x_1 + 1.0, a)
    param[1] = cubic_1(x_1, a)
    param[2] = cubic_1(x_2, a)
    param[3] = cubic_2(x_2 + 1.0, a)
    return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]


def value_bound(input, w, h, x, y):
    access_x = int(max(min(x, w - 1), 0))
    access_y = int(max(min(y, h - 1), 0))
    return input[:, :, access_y, access_x]


def bicubic_interp_np(input,
                      out_h,
                      out_w,
                      out_size=None,
                      actual_shape=None,
                      align_corners=True,
                      data_layout='kNCHW'):
    """trilinear interpolation implement in shape [N, C, H, W]"""
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 3, 1, 2))  # NHWC => NCHW
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    if actual_shape is not None:
        out_h = actual_shape[0]
        out_w = actual_shape[1]
    batch_size, channel, in_h, in_w = input.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
        if (align_corners):
            ratio_h = (in_h - 1.0) / (out_h - 1.0)
        else:
            ratio_h = 1.0 * in_h / out_h

    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_h, out_w))

    for k in range(out_h):
        if (align_corners):
            h = ratio_h * k
        else:
            h = ratio_h * (k + 0.5) - 0.5
        input_y = np.floor(h)
        y_t = h - input_y
        for l in range(out_w):
            if (align_corners):
                w = ratio_w * l
            else:
                w = ratio_w * (l + 0.5) - 0.5
            input_x = np.floor(w)
            x_t = w - input_x
            for i in range(batch_size):
                for j in range(channel):
                    coefficients = [0, 0, 0, 0]
                    for ii in range(4):
                        access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
                        access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
                        access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
                        access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
                        access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))

                        coefficients[ii] = cubic_interp1d(
                            input[i, j, access_y, access_x_0],
                            input[i, j, access_y, access_x_1],
                            input[i, j, access_y, access_x_2],
                            input[i, j, access_y, access_x_3], x_t)
                    out[i, j, k, l] = cubic_interp1d(
                        coefficients[0], coefficients[1], coefficients[2],
                        coefficients[3], y_t)
    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 3, 1))  # NCHW => NHWC
    return out.astype(input.dtype)


class TestBicubicInterpOp(OpTest):
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "bicubic_interp"
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_h = self.input_shape[2]
            in_w = self.input_shape[3]
        else:
            in_h = self.input_shape[1]
            in_w = self.input_shape[2]

        if self.scale > 0:
            out_h = int(in_h * self.scale)
            out_w = int(in_w * self.scale)
        else:
            out_h = self.out_h
            out_w = self.out_w

        output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size,
                                      self.actual_shape, self.align_corners,
                                      self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape

        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', in_place=True)

    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 5, 5]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase1(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase2(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 10
        self.out_w = 8
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase3(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0.
        self.align_corners = False


class TestBicubicInterpCase4(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.out_size = np.array([2, 2]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase5(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 11
        self.out_w = 11
        self.scale = 0.
        self.out_size = np.array([6, 4]).astype("int32")
        self.align_corners = False


class TestBicubicInterpCase6(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0
        self.out_size = np.array([64, 32]).astype("int32")
        self.align_corners = False


class TestBicubicInterpSame(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 32, 64]
        self.out_h = 32
        self.out_w = 64
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpDataLayout(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 5, 5, 3]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True
        self.data_layout = "NHWC"


class TestBicubicInterpOpAPI(unittest.TestCase):
    def test_case(self):
268
        np.random.seed(200)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        x_data = np.random.random((2, 3, 6, 6)).astype("float32")
        dim_data = np.array([12]).astype("int32")
        shape_data = np.array([12, 12]).astype("int32")
        actual_size_data = np.array([12, 12]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")

        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()

        with fluid.program_guard(prog, startup_prog):

            x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

            dim = fluid.data(name="dim", shape=[1], dtype="int32")
            shape_tensor = fluid.data(
                name="shape_tensor", shape=[2], dtype="int32")
            actual_size = fluid.data(
                name="actual_size", shape=[2], dtype="int32")
            scale_tensor = fluid.data(
                name="scale_tensor", shape=[1], dtype="float32")

            out1 = interpolate(
                x, out_shape=[12, 12], resample='BICUBIC', align_corners=False)
            out2 = interpolate(
                x, out_shape=[12, dim], resample='BICUBIC', align_corners=False)
            out3 = interpolate(
                x,
                out_shape=shape_tensor,
                resample='BICUBIC',
                align_corners=False)
            out4 = interpolate(
                x,
                out_shape=[4, 4],
                actual_shape=actual_size,
                resample='BICUBIC',
                align_corners=False)
            out5 = interpolate(
                x, scale=scale_tensor, resample='BICUBIC', align_corners=False)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            results = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "dim": dim_data,
                                  "shape_tensor": shape_data,
                                  "actual_size": actual_size_data,
                                  "scale_tensor": scale_data
                              },
                              fetch_list=[out1, out2, out3, out4, out5],
                              return_numpy=True)

            expect_res = bicubic_interp_np(
                x_data, out_h=12, out_w=12, align_corners=False)
            for res in results:
                self.assertTrue(np.allclose(res, expect_res))

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
            interp = interpolate(
                x, out_shape=[12, 12], resample='BICUBIC', align_corners=False)
            dy_result = interp.numpy()
            expect = bicubic_interp_np(
                x_data, out_h=12, out_w=12, align_corners=False)
            self.assertTrue(np.allclose(dy_result, expect))


class TestBicubicOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of interpoalte must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, interpolate, x1)

            def test_mode_type():
                # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

                out = interpolate(
                    x,
                    out_shape=[12, 12],
                    resample='UNKONWN',
                    align_corners=False)

            def test_input_shape():
                x = fluid.data(name="x", shape=[2], dtype="float32")
                out = interpolate(
                    x,
                    out_shape=[12, 12],
                    resample='BICUBIC',
                    align_corners=False)

            def test_align_corcers():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                interpolate(
                    x, out_shape=[12, 12], resample='BICUBIC', align_corners=3)

            def test_out_shape():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                out = interpolate(
                    x, out_shape=[12], resample='BICUBIC', align_corners=False)

            def test_attr_data_format():
                # for 5-D input, data_format only can be NCDHW or NDHWC
                input = fluid.data(
                    name="input", shape=[2, 3, 6, 9, 4], dtype="float32")
                out = interpolate(
                    input,
                    out_shape=[4, 8, 4, 5],
                    resample='TRILINEAR',
                    data_format='NHWC')

            def test_actual_shape():
                # the actual_shape  must be Variable.
                x = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                out = interpolate(
                    x,
                    out_shape=[12, 12],
                    resample='BICUBIC',
                    align_corners=False)

            def test_scale_value():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                out = interpolate(
                    x,
                    out_shape=None,
                    resample='BICUBIC',
                    align_corners=False,
                    scale=-2.0)

            def test_attr_5D_input():
                # for 5-D input, data_format only can be NCDHW or NDHWC
                input = fluid.data(
                    name="input", shape=[2, 3, 6, 9, 4], dtype="float32")
                out = interpolate(
                    input,
                    out_shape=[4, 8, 4, 5],
                    resample='TRILINEAR',
                    data_format='NDHWC')

            def test_scale_type():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                scale = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                out = interpolate(
                    x,
                    out_shape=None,
                    resample='BICUBIC',
                    align_corners=False,
                    scale=scale)

            def test_align_mode():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                out = interpolate(
                    x,
                    out_shape=None,
                    resample='NEAREST',
                    align_corners=False,
                    align_mode=2,
                    scale=1.0)

            def test_outshape_and_scale():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
                out = interpolate(
                    x,
                    out_shape=None,
                    resample='BICUBIC',
                    align_corners=False,
                    scale=None)

            self.assertRaises(ValueError, test_mode_type)
            self.assertRaises(ValueError, test_input_shape)
            self.assertRaises(TypeError, test_align_corcers)
            self.assertRaises(ValueError, test_attr_data_format)
            self.assertRaises(TypeError, test_actual_shape)
            self.assertRaises(ValueError, test_scale_value)
            self.assertRaises(ValueError, test_out_shape)
            self.assertRaises(ValueError, test_attr_5D_input)
            self.assertRaises(TypeError, test_scale_type)
            self.assertRaises(ValueError, test_align_mode)
            self.assertRaises(ValueError, test_outshape_and_scale)


if __name__ == "__main__":
    unittest.main()