test_prroi_pool_op.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
from py_precise_roi_pool import PyPrRoIPool
from op_test import OpTest
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23 24 25 26 27 28 29 30 31 32
from paddle.fluid import compiler, Program, program_guard


class TestPRROIPoolOp(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.prRoIPool = PyPrRoIPool()
        self.outs = self.prRoIPool.compute(
            self.x, self.rois, self.output_channels, self.spatial_scale,
33
            self.pooled_height, self.pooled_width).astype('float64')
34 35 36 37 38 39 40 41 42 43 44 45
        self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
        self.attrs = {
            'output_channels': self.output_channels,
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width
        }
        self.outputs = {'Out': self.outs}

    def init_test_case(self):
        self.batch_size = 3
        self.channels = 3 * 2 * 2
46 47
        self.height = 12
        self.width = 16
48 49 50

        self.x_dim = [self.batch_size, self.channels, self.height, self.width]

51
        self.spatial_scale = 1.0 / 2.0
52
        self.output_channels = self.channels
53 54
        self.pooled_height = 4
        self.pooled_width = 4
55

56
        self.x = np.random.random(self.x_dim).astype('float64')
57 58 59 60 61 62 63

    def make_rois(self):
        rois = []
        self.rois_lod = [[]]
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
64
                x1 = np.random.uniform(
65
                    0, self.width // self.spatial_scale - self.pooled_width)
66
                y1 = np.random.uniform(
67 68
                    0, self.height // self.spatial_scale - self.pooled_height)

69 70 71 72
                x2 = np.random.uniform(x1 + self.pooled_width,
                                       self.width // self.spatial_scale)
                y2 = np.random.uniform(y1 + self.pooled_height,
                                       self.height // self.spatial_scale)
73 74 75
                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
76
        self.rois = np.array(rois).astype('float64')
77 78 79 80 81 82 83 84 85

    def setUp(self):
        self.op_type = 'prroi_pool'
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_backward(self):
86 87 88 89 90
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_grad_with_place(place, ['X'], 'Out')
91 92 93 94 95 96

    def run_net(self, place):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
                name="X",
                shape=[self.channels, self.height, self.width],
97
                dtype="float64")
98
            rois = fluid.layers.data(
99
                name="ROIs", shape=[4], dtype="float64", lod_level=1)
100
            output = fluid.layers.prroi_pool(x, rois, 0.25, 2, 2)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            loss = fluid.layers.mean(output)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)
            input_x = fluid.create_lod_tensor(self.x, [], place)
            input_rois = fluid.create_lod_tensor(self.rois[:, 1:5],
                                                 self.rois_lod, place)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            exe.run(fluid.default_main_program(),
                    {'X': input_x,
                     "ROIs": input_rois})

    def test_net(self):
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.run_net(place)

    def test_errors(self):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                name="x", shape=[245, 30, 30], dtype="float64")
            rois = fluid.layers.data(
                name="rois", shape=[4], dtype="float64", lod_level=1)
            # spatial_scale must be float type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7,
                              7)
            # pooled_height must be int type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
                              0.7, 7)
            # pooled_width must be int type
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
                              7, 0.7)


class TestPRROIPoolOpTensorRoIs(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.prRoIPool = PyPrRoIPool()
        self.outs = self.prRoIPool.compute(
            self.x, self.rois, self.output_channels, self.spatial_scale,
            self.pooled_height, self.pooled_width).astype('float64')

        self.rois_index = np.array(self.rois_lod).reshape([-1]).astype(np.int64)
        self.inputs = {
            'X': self.x,
            'ROIs': self.rois[:, 1:5],
            'BatchRoINums': self.rois_index
        }
        self.attrs = {
            'output_channels': self.output_channels,
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width
        }
        self.outputs = {'Out': self.outs}

    def init_test_case(self):
        self.batch_size = 3
        self.channels = 3 * 2 * 2
        self.height = 12
        self.width = 16

        self.x_dim = [self.batch_size, self.channels, self.height, self.width]

        self.spatial_scale = 1.0 / 2.0
        self.output_channels = self.channels
        self.pooled_height = 4
        self.pooled_width = 4

        self.x = np.random.random(self.x_dim).astype('float64')

    def make_rois(self):
        rois = []
        self.rois_lod = []
        for bno in range(self.batch_size):
            self.rois_lod.append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.uniform(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.uniform(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.uniform(x1 + self.pooled_width,
                                       self.width // self.spatial_scale)
                y2 = np.random.uniform(y1 + self.pooled_height,
                                       self.height // self.spatial_scale)
                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
        self.rois = np.array(rois).astype('float64')

    def setUp(self):
        self.op_type = 'prroi_pool'
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_backward(self):
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_grad_with_place(place, ['X'], 'Out')

    def run_net(self, place):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
                name="X",
                shape=[self.channels, self.height, self.width],
                dtype="float64")
            rois = fluid.layers.data(name="ROIs", shape=[4], dtype="float64")
            rois_index = fluid.layers.data(
                name='rois_idx', shape=[], dtype="int64")
            output = fluid.layers.prroi_pool(
                x, rois, 0.25, 2, 2, batch_roi_nums=rois_index)
            loss = fluid.layers.mean(output)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            exe.run(fluid.default_main_program(), {
                'X': self.x,
                "ROIs": self.rois[:, 1:5],
                "rois_idx": self.rois_index
            })

    def test_net(self):
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.run_net(place)

    def test_errors(self):
        with program_guard(Program(), Program()):
            x = fluid.layers.data(
                name="x", shape=[245, 30, 30], dtype="float64")
242
            rois = fluid.layers.data(
243
                name="rois", shape=[4], dtype="float64", lod_level=1)
244
            # spatial_scale must be float type
245 246
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7,
                              7)
247
            # pooled_height must be int type
248 249
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
                              0.7, 7)
250
            # pooled_width must be int type
251 252
            self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
                              7, 0.7)
253 254 255 256


if __name__ == '__main__':
    unittest.main()