remove_grad_op_and_kernel.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script simply removes all grad ops and kernels. You should use this script 
when cmake ON_INFER=ON, which can greatly reduce the volume of the prediction library.
"""

import os
import sys
import re
import glob
23
import io
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


def find_type_files(cur_dir, file_type, file_list=[]):
    next_level_dirs = os.listdir(cur_dir)
    for next_level_name in next_level_dirs:
        next_level_dir = os.path.join(cur_dir, next_level_name)
        if os.path.isfile(next_level_dir):
            if os.path.splitext(next_level_dir)[1] == file_type:
                file_list.append(next_level_dir)
        elif os.path.isdir(next_level_dir):
            find_type_files(next_level_dir, file_type, file_list)
    return file_list


def remove_grad_op_and_kernel(content, pattern1, pattern2):
    res = []
    first_match = re.findall(pattern1, content, flags=re.DOTALL)
    for match in first_match:
        res.extend(re.findall(pattern2, match, flags=re.DOTALL))
    return res, len(res)


def update_operator_cmake(cmake_file):
    pat1 = 'add_subdirectory(optimizers)'
    pat2 = 'register_operators\(EXCLUDES.*?py_func_op.*?\)'

    code1 = 'if(ON_INFER)\nadd_subdirectory(optimizers)\nendif()'
    code2 = 'if(ON_INFER)\nfile(GLOB LOSS_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*loss_op.cc")\nstring(REPLACE ".cc" "" LOSS_OPS "${LOSS_OPS}")\nendif()'

    with open(cmake_file, 'r') as f:
        content = ''.join(f.readlines())
        content = content.replace(pat1, code1)

        match = re.findall(pat2, content, flags=re.DOTALL)
58 59 60
        content = content.replace(
            match[0], code2 + '\n' +
            match[0].replace('py_func_op', 'py_func_op ${LOSS_OPS}'))
61 62 63 64 65 66 67 68 69 70

    with open(cmake_file, 'w') as f:
        f.write(content)


if __name__ == '__main__':

    tool_dir = os.path.dirname(os.path.abspath(__file__))

    if sys.version_info[0] == 3:
71 72 73 74 75 76
        all_op = glob.glob(os.path.join(tool_dir,
                                        '../paddle/fluid/operators/**/*.cc'),
                           recursive=True)
        all_op += glob.glob(os.path.join(tool_dir,
                                         '../paddle/fluid/operators/**/*.cu'),
                            recursive=True)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    elif sys.version_info[0] == 2:
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cc')
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cu', all_op)

    spec_ops = ['activation_op.cc']

    register_op_count, register_op_cpu_kernel_count, register_op_cuda_kernel_count, register_op_xpu_kernel_count = 0, 0, 0, 0
    register_op_kernel_count, register_op_kernel_with_custom_type_count = 0, 0

    # 1. remove all grad op and kernel
    for op_file in all_op:
        # remove all grad op
        op_pattern1 = 'REGISTER_OPERATOR\(.*?\);?'
        op_pattern2 = 'REGISTER_OPERATOR\(.*?_grad,.*?\);?'

        # remove all cpu grad kernel
        cpu_kernel_pattern1 = 'REGISTER_OP_CPU_KERNEL\(.*?\);?'
        cpu_kernel_pattern2 = 'REGISTER_OP_CPU_KERNEL\(.*?_grad,.*?\);?'

        # remove all gpu grad kernel
        gpu_kernel_pattern1 = 'REGISTER_OP_CUDA_KERNEL\(.*?\);?'
        gpu_kernel_pattern2 = 'REGISTER_OP_CUDA_KERNEL\(.*?_grad,.*?\);?'

        # remove all xpu grad kernel
        xpu_kernel_pattern1 = 'REGISTER_OP_XPU_KERNEL\(.*?\);?'
        xpu_kernel_pattern2 = 'REGISTER_OP_XPU_KERNEL\(.*?_grad,.*?\);?'

        # remove custom grad kernel, mkldnn or cudnn etc.
        op_kernel_pattern1 = 'REGISTER_OP_KERNEL\(.*?\);?'
        op_kernel_pattern2 = 'REGISTER_OP_KERNEL\(.*?_grad,.*?\);?'

        custom_pattern1 = 'REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE\(.*?\);?'
        custom_pattern2 = 'REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE\(.*?_grad,.*?\);?'

        op_name = os.path.split(op_file)[1]
        if op_name in spec_ops:
            op_pattern1 = op_pattern1[:-1]
            op_pattern2 = op_pattern2[:-1]
            cpu_kernel_pattern1 = cpu_kernel_pattern1[:-1]
            cpu_kernel_pattern2 = cpu_kernel_pattern2[:-1]
            gpu_kernel_pattern1 = gpu_kernel_pattern1[:-1]
            gpu_kernel_pattern2 = gpu_kernel_pattern2[:-1]
            xpu_kernel_pattern1 = xpu_kernel_pattern1[:-1]
            xpu_kernel_pattern2 = xpu_kernel_pattern2[:-1]
            op_kernel_pattern1 = op_kernel_pattern1[:-1]
            op_kernel_pattern2 = op_kernel_pattern2[:-1]
            custom_pattern1 = custom_pattern1[:-1]
            custom_pattern2 = custom_pattern2[:-1]

        all_matches = []
129
        with io.open(op_file, 'r', encoding='utf-8') as f:
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            content = ''.join(f.readlines())

            op, op_count = remove_grad_op_and_kernel(content, op_pattern1,
                                                     op_pattern2)
            cpu_kernel, cpu_kernel_count = remove_grad_op_and_kernel(
                content, cpu_kernel_pattern1, cpu_kernel_pattern2)
            gpu_kernel, gpu_kernel_count = remove_grad_op_and_kernel(
                content, gpu_kernel_pattern1, gpu_kernel_pattern2)
            xpu_kernel, xpu_kernel_count = remove_grad_op_and_kernel(
                content, xpu_kernel_pattern1, xpu_kernel_pattern2)
            op_kernel, op_kernel_count = remove_grad_op_and_kernel(
                content, op_kernel_pattern1, op_kernel_pattern2)
            custom_kernel, custom_kernel_count = remove_grad_op_and_kernel(
                content, custom_pattern1, custom_pattern2)

            register_op_count += op_count
            register_op_cpu_kernel_count += cpu_kernel_count
            register_op_cuda_kernel_count += gpu_kernel_count
            register_op_xpu_kernel_count += xpu_kernel_count
            register_op_kernel_count += op_kernel_count
            register_op_kernel_with_custom_type_count += custom_kernel_count

            all_matches.extend(op)
            all_matches.extend(cpu_kernel)
            all_matches.extend(gpu_kernel)
            all_matches.extend(xpu_kernel)
            all_matches.extend(op_kernel)
            all_matches.extend(custom_kernel)

        for i in all_matches:
            content = content.replace(i, '')

162 163
        with io.open(op_file, 'w', encoding='utf-8') as f:
            f.write(u'{}'.format(content))
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    # 2. update operators/CMakeLists.txt
    cmake_file = os.path.join(tool_dir,
                              '../paddle/fluid/operators/CMakeLists.txt')
    update_operator_cmake(cmake_file)

    print('We erase all grad op and kernel for Paddle-Inference lib.')
    print('%50s%10s' % ('type', 'count'))
    print('%50s%10s' % ('REGISTER_OPERATOR', register_op_count))
    print('%50s%10s' % ('REGISTER_OP_CPU_KERNEL', register_op_cpu_kernel_count))
    print('%50s%10s' %
          ('REGISTER_OP_CUDA_KERNEL', register_op_cuda_kernel_count))
    print('%50s%10s' % ('REGISTER_OP_XPU_KERNEL', register_op_xpu_kernel_count))
    print('%50s%10s' % ('REGISTER_OP_KERNEL', register_op_kernel_count))
    print('%50s%10s' % ('REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE',
                        register_op_kernel_with_custom_type_count))