common_graph_table.h 18.4 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
S
seemingwang 已提交
20 21 22 23 24 25
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
26
#include <list>
S
seemingwang 已提交
27
#include <map>
S
seemingwang 已提交
28 29
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
30 31 32
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
33
#include <string>
S
seemingwang 已提交
34
#include <thread>
S
seemingwang 已提交
35
#include <unordered_map>
S
seemingwang 已提交
36
#include <unordered_set>
S
seemingwang 已提交
37 38
#include <utility>
#include <vector>
39 40
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
41
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
42
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
43
#include "paddle/fluid/string/string_helper.h"
44
#include "paddle/phi/core/utils/rw_lock.h"
45

46 47 48
#ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
49 50 51 52 53 54
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
55
  ~GraphShard();
S
seemingwang 已提交
56 57
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
58 59
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
60
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
61 62 63 64
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
S
seemingwang 已提交
65

66
  GraphNode *add_graph_node(int64_t id);
67
  GraphNode *add_graph_node(Node *node);
68 69 70
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
71
  void clear();
72 73
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
74 75 76 77
    return node_location;
  }

 private:
78
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
79 80
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
81 82 83 84

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
85
  int64_t node_key;
S
seemingwang 已提交
86
  size_t sample_size;
87
  bool is_weighted;
88
  SampleKey(int64_t _node_key, size_t _sample_size, bool _is_weighted)
89 90 91
      : node_key(_node_key),
        sample_size(_sample_size),
        is_weighted(_is_weighted) {}
S
seemingwang 已提交
92
  bool operator==(const SampleKey &s) const {
93 94
    return node_key == s.node_key && sample_size == s.sample_size &&
           is_weighted == s.is_weighted;
S
seemingwang 已提交
95 96 97 98 99 100
  }
};

class SampleResult {
 public:
  size_t actual_size;
101 102 103 104 105 106 107
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
122
template <typename K, typename V>
S
seemingwang 已提交
123 124
class ScaledLRU;

125
template <typename K, typename V>
S
seemingwang 已提交
126 127
class RandomSampleLRU {
 public:
128 129 130
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
131 132 133
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
134
    total_diff = 0;
S
seemingwang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
162 163
        }
      }
164 165 166 167 168
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
169 170 171 172 173 174 175
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
176 177 178 179 180 181 182 183 184 185 186 187
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
188 189
      }
    }
190 191 192 193 194 195
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
196 197 198
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
199 200
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
201
    node_size--;
202 203
    key_map.erase(node->key);
    delete node;
204 205 206
  }

  void process_redundant(int process_size) {
207
    int length = std::min(remove_count, process_size);
208 209 210
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
211
    }
212
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
213 214
  }

215 216 217 218 219 220 221 222 223 224 225 226
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
227 228 229 230 231 232 233 234 235 236 237
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

238 239 240 241 242 243 244 245 246 247 248 249 250
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
251
 private:
252 253
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
254
  size_t global_ttl, size_limit;
255
  int node_size, total_diff;
S
seemingwang 已提交
256
  LRUNode<K, V> *node_head, *node_end;
257
  friend class ScaledLRU<K, V>;
258
  int remove_count;
S
seemingwang 已提交
259 260
};

261
template <typename K, typename V>
S
seemingwang 已提交
262 263
class ScaledLRU {
 public:
264
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
265
      : size_limit(size_limit), ttl(_ttl) {
266
    shard_num = _shard_num;
S
seemingwang 已提交
267 268 269 270
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
271 272
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
273 274 275 276
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
277
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
          if (stop) {
            return;
          }
        }
        auto status =
            thread_pool->enqueue([this]() -> int { return shrink(); });
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
  LRUResponse query(size_t index, K *keys, size_t length,
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
  int shrink() {
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
304
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
305 306
    }

307
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
308
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
309 310 311 312
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
313
      if ((size_t)global_count > size_limit) {
314
        size_t remove = global_count - size_limit;
315
        for (size_t i = 0; i < lru_pool.size(); i++) {
316 317 318 319
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
320 321 322 323 324 325 326
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
327

S
seemingwang 已提交
328 329 330
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
331
      if (global_count > int(1.25 * size_limit)) {
S
seemingwang 已提交
332 333 334 335 336 337 338 339 340
        thread_pool->enqueue([this]() -> int { return shrink(); });
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
341
  size_t shard_num;
S
seemingwang 已提交
342
  int global_count;
343
  size_t size_limit, total, hit;
S
seemingwang 已提交
344 345 346
  size_t ttl;
  bool stop;
  std::thread shrink_job;
347
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
348 349 350
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
351
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
352 353
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif

S
seemingwang 已提交
407 408
class GraphTable : public SparseTable {
 public:
409 410 411 412 413 414 415 416
  GraphTable() {
    use_cache = false;
    shard_num = 0;
#ifdef PADDLE_WITH_HETERPS
    gpups_mode = false;
#endif
    rw_lock.reset(new pthread_rwlock_t());
  }
417
  virtual ~GraphTable();
S
seemingwang 已提交
418 419 420 421 422
  virtual int32_t pull_graph_list(int start, int size,
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

423
  virtual int32_t random_sample_neighbors(
424
      int64_t *node_ids, int sample_size,
425
      std::vector<std::shared_ptr<char>> &buffers,
426
      std::vector<int> &actual_sizes, bool need_weight);
S
seemingwang 已提交
427 428 429 430 431

  int32_t random_sample_nodes(int sample_size, std::unique_ptr<char[]> &buffers,
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
432 433 434 435 436
      std::vector<std::pair<int, int>> ranges, std::vector<int64_t> &res);
  virtual int32_t initialize() { return 0; }
  virtual int32_t initialize(const TableParameter &config,
                             const FsClientParameter &fs_config);
  virtual int32_t initialize(const GraphParameter &config);
S
seemingwang 已提交
437
  int32_t load(const std::string &path, const std::string &param);
438
  int32_t load_graph_split_config(const std::string &path);
S
seemingwang 已提交
439 440 441 442 443

  int32_t load_edges(const std::string &path, bool reverse);

  int32_t load_nodes(const std::string &path, std::string node_type);

444
  int32_t add_graph_node(std::vector<int64_t> &id_list,
445 446
                         std::vector<bool> &is_weight_list);

447
  int32_t remove_graph_node(std::vector<int64_t> &id_list);
448

449 450
  int32_t get_server_index_by_id(int64_t id);
  Node *find_node(int64_t id);
S
seemingwang 已提交
451

Y
yaoxuefeng 已提交
452 453 454
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

455 456
  virtual int32_t pull_sparse(float *values,
                              const PullSparseValue &pull_value) {
S
seemingwang 已提交
457 458
    return 0;
  }
459

S
seemingwang 已提交
460 461 462 463
  virtual int32_t push_sparse(const uint64_t *keys, const float *values,
                              size_t num) {
    return 0;
  }
464

465
  virtual int32_t clear_nodes();
S
seemingwang 已提交
466 467 468 469 470 471 472 473
  virtual void clear() {}
  virtual int32_t flush() { return 0; }
  virtual int32_t shrink(const std::string &param) { return 0; }
  //指定保存路径
  virtual int32_t save(const std::string &path, const std::string &converter) {
    return 0;
  }
  virtual int32_t initialize_shard() { return 0; }
474 475 476 477 478 479 480 481 482 483 484 485 486
  virtual int32_t set_shard(size_t shard_idx, size_t server_num) {
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
S
seemingwang 已提交
487 488
  virtual std::pair<int32_t, std::string> parse_feature(std::string feat_str);

489
  virtual int32_t get_node_feat(const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
490 491 492
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
493
  virtual int32_t set_node_feat(
494
      const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
495 496 497
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
498 499
  size_t get_server_num() { return server_num; }

500
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
501 502 503
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
504
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
505
            task_pool_size_, size_limit, ttl));
506 507 508 509 510
        use_cache = true;
      }
    }
    return 0;
  }
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef PADDLE_WITH_HETERPS
  virtual int32_t start_graph_sampling() {
    return this->graph_sampler->start_graph_sampling();
  }
  virtual int32_t end_graph_sampling() {
    return this->graph_sampler->end_graph_sampling();
  }
  virtual int32_t set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    graph_sampler->set_graph_sample_callback(callback);
    return 0;
  }
// virtual GraphSampler *get_graph_sampler() { return graph_sampler.get(); }
#endif
S
seemingwang 已提交
526
 protected:
527
  std::vector<GraphShard *> shards, extra_shards;
S
seemingwang 已提交
528
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
529
  int task_pool_size_ = 24;
S
seemingwang 已提交
530 531 532 533 534 535 536 537 538 539
  const int random_sample_nodes_ranges = 3;

  std::vector<std::string> feat_name;
  std::vector<std::string> feat_dtype;
  std::vector<int32_t> feat_shape;
  std::unordered_map<std::string, int32_t> feat_id_map;
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
540
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
541
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
542 543
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
544
  bool use_cache, use_duplicate_nodes;
545 546
  int cache_size_limit;
  int cache_ttl;
547
  mutable std::mutex mutex_;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
  bool gpups_mode;
  // std::shared_ptr<::ThreadPool> graph_sample_pool;
  std::shared_ptr<GraphSampler> graph_sampler;
  REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
#endif
};

#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
593
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
594 595 596
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
597
};
598
#endif
599
}  // namespace distributed
600

601
};  // namespace paddle
602 603 604 605 606 607 608 609 610 611

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
    return s.node_key ^ s.sample_size;
  }
};
}