lookup_table_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
30 31 32
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable");
    OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable");
Q
Qiao Longfei 已提交
33 34 35

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
36
    int ids_rank = ids_dims.size();
37
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
38 39
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
40 41 42 43 44
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
45 46
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
47 48 49 50
        platform::errors::InvalidArgument(
            "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
            "But received Ids's last dimensions = %d, Ids's shape = [%s].",
            ids_dims[ids_rank - 1], ids_dims));
51

52 53 54 55
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
56 57 58 59 60

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
61
  }
Y
Yu Yang 已提交
62

63
 protected:
64
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
65
      const framework::ExecutionContext& ctx) const override {
66
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
Q
qiaolongfei 已提交
67
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
68
  }
69 70 71 72
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
73
  void Make() override {
74
    AddInput("W",
C
chengduoZH 已提交
75
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
76
             "which is a learnable parameter.");
77
    AddInput("Ids",
78
             "An input with type int64 "
79
             "contains the ids to be looked up in W. "
80
             "The last dimension size must be 1.");
81
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
82
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
83
                  "(boolean, default false) "
C
chengduoZH 已提交
84
                  "Sparse update.")
C
chengduoZH 已提交
85
        .SetDefault(false);
86 87 88
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
89 90 91 92 93
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
94
        .SetDefault(kNoPadding);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    // for parameter training config
    AddAttr<bool>("remote_prefetch",
                  "pull sparse params from parameters, this can only be used "
                  "in distributed training")
        .SetDefault(false);

    AddAttr<std::string>("entry_config",
                         "embedding sparse feature entry config, "
                         " probability entry / counting "
                         " this can only be used in distributed training"
                         "entry")
        .SetDefault("");

    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training.")
        .SetDefault(false);

    AddAttr<std::string>("entry",
                         "(std::string, default "
                         ") for entry attribute.")
        .SetDefault("none");

    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the split table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
M
minqiyang 已提交
126 127 128 129
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
130 131 132 133
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
134
        .SetDefault({});
135 136 137
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
C
chengduoZH 已提交
138
    AddComment(R"DOC(
C
chengduoZH 已提交
139
Lookup Table Operator.
C
chengduoZH 已提交
140

C
chengduoZH 已提交
141
This operator is used to perform lookups on the parameter W,
142
then concatenated into a dense tensor.
143

144 145
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
146 147 148 149 150

)DOC");
  }
};

151
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableGradOpNoBufferVarsInferer, "W");
H
Huihuang Zheng 已提交
152

H
hong 已提交
153 154
template <typename T>
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
155
 public:
H
hong 已提交
156
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
157 158

 protected:
159
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
160 161
    op->SetType("lookup_table_grad");

H
hong 已提交
162 163 164
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
H
Huihuang Zheng 已提交
165

H
hong 已提交
166
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
H
Huihuang Zheng 已提交
167

H
hong 已提交
168
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
169 170 171
  }
};

172 173 174 175
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

176
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
177 178
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
179
  }
Y
Yu Yang 已提交
180

181
 protected:
182
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
183
      const framework::ExecutionContext& ctx) const override {
184 185
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
Q
qiaolongfei 已提交
186
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
187
  }
188 189
};

190 191
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
192
  void operator()(framework::InferVarTypeContext* ctx) const override {
193
    auto out_var_name = framework::GradVarName("W");
M
minqiyang 已提交
194
    auto attr = ctx->GetAttr("is_sparse");
195
    bool is_sparse = BOOST_GET(bool, attr);
196
    if (is_sparse) {
M
minqiyang 已提交
197 198
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
199 200
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
201
    } else {
M
minqiyang 已提交
202 203
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
204
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
205
    }
206
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
207 208 209
  }
};

210 211 212 213
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
214
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
H
hong 已提交
215 216
                  ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
217

218
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
219
                  ops::LookupTableGradOpNoBufferVarsInferer,
220 221 222
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
223 224
                       ops::LookupTableKernel<double>,
                       ops::LookupTableKernel<int8_t>);
225 226
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);