fleet_base.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17
import paddle
from .strategy_compiler import StrategyCompiler
18
from .distributed_strategy import DistributedStrategy
19
from .meta_optimizer_factory import MetaOptimizerFactory
20 21
from .runtime_factory import RuntimeFactory
from .util_factory import UtilFactory
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
__all__ = ['Fleet']


class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
    Please reference the https://github.com/PaddlePaddle/Fleet for details


    Returns:
        Fleet: A Fleet instance

    Examples:
        .. code-block:: python

38 39
            import paddle.distributed.fleet as fleet
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            if fleet.is_first_worker():
                print("this is first worker")
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
    """

    def __init__(self):
        self._runtime_handle = None
        self._util = None

    def init(self, role_maker):
        self._role_maker = role_maker
        self.strategy_compiler = StrategyCompiler()

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        
        """
        return self._role_maker.is_first_worker()

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
        """
        return self._role_maker.worker_index()

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
        """
        return self._role_maker.worker_num()

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
        return self._role_maker.is_server()

    @property
    def util(self):
        """
        Utility functions that can be used under certain runtime
        return util
        """
        return self._util

    @util.setter
    def util(self, util):
        """
        Set Utility functions for userd-defined runtime
        set util
        """
        self._util = util

    def barrier_worker(self):
        """
        barrier between workers
        """
        self._role_maker.barrier_worker()

    def init_worker(self):
        """
        init worker
        """
        assert self._runtime_handle is not None
        self._runtime_handle._init_worker()

192
    def init_server(self, *args, **kwargs):
193 194 195 196
        """
        init server
        """
        assert self._runtime_handle is not None
197
        self._runtime_handle._init_server(*args, **kwargs)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    def run_server(self):
        """
        run server
        """
        assert self._runtime_handle is not None
        self._runtime_handle._run_server()

    def stop_worker(self):
        """
        stop worker
        """
        assert self._runtime_handle is not None
        self._runtime_handle._stop_worker()

213
    def distributed_optimizer(self, optimizer, strategy=None):
214 215 216 217 218 219 220
        """
        distirbuted_optimizer
        Returns:
            Fleet instance with minimize interface like optimizers

        Examples:
            .. code-block:: python
221 222
            import paddle.distributed.fleet as fleet
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
223 224 225 226 227 228
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        """
        self.user_defined_optimizer = optimizer
229 230
        if strategy == None:
            strategy = DistributedStrategy()
231
        self.user_defined_strategy = strategy
D
Dong Daxiang 已提交
232
        self.valid_strategy = None
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        return self

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            import paddle
264
            import paddle.distributed.fleet as fleet
265 266 267 268 269 270 271

            fc_1 = paddle.layers.fc(input=input_x, size=hid_dim, act='tanh')
            fc_2 = paddlen.layers.fc(input=fc_1, size=hid_dim, act='tanh')
            prediction = paddle.layers.fc(input=[fc_2], size=label_dim, act='softmax')
            cost = paddle.layers.cross_entropy(input=prediction, label=input_y)
            avg_cost = paddle.layers.mean(x=cost)

272
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
273 274 275 276 277 278 279 280 281
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            optimizer.minimize(avg_cost)

            # for more examples, please reference https://github.com/PaddlePaddle/Fleet

        """
282
        context = {}
283 284
        # cache original feed forward program
        self.origin_main_program = loss.block.program
285 286
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
287 288
        if startup_program == None:
            self.origin_startup_program = \
289 290
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
291 292 293
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
294

295 296
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
297 298 299 300 301

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
302

303 304
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
305
        can_not_apply_optimizer_list = []
306 307 308 309 310 311 312
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
                                self.user_defined_strategy)
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
313
            elif opt._can_apply() and opt._is_graph_out():
314
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
315 316
            else:
                can_not_apply_optimizer_list.append(opt)
317
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
318
        meta_optimizer, graph_optimizer = \
319 320 321 322
                self.strategy_compiler.generate_optimizer(
                    loss, self._role_maker, self.user_defined_optimizer,
                    self.user_defined_strategy, valid_optimizer_list,
                    valid_graph_optimizer_list)
D
Dong Daxiang 已提交
323

D
Dong Daxiang 已提交
324 325
        valid_strategy = self.strategy_compiler._get_valid_strategy(
            self.user_defined_strategy, can_not_apply_optimizer_list)
326 327 328

        context["valid_strategy"] = valid_strategy

D
Dong Daxiang 已提交
329 330
        self.valid_strategy = valid_strategy

331 332
        optimize_ops = []
        params_grads = []
333

334 335 336 337 338 339
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
340

341
            default_program = paddle.static.default_main_program()
342 343 344 345

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

346 347 348 349 350 351
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
352

353 354
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
355

356
        if graph_optimizer:
D
Dong Daxiang 已提交
357
            optimize_ops, params_grads = graph_optimizer.minimize(
358 359 360 361 362 363 364 365
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
366 367 368
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

369
        if self._runtime_handle is None:
370
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
371 372

        if self._util is None:
373
            self._util = UtilFactory()._create_util(context)
374 375

        return optimize_ops, params_grads