lookup_table_v2_op.h 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
tangwei12 已提交
17
#include <algorithm>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

constexpr int64_t kNoPadding = -1;

template <typename T>
class LookupTableV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
    auto *table_var = context.InputVar("W");

T
tangwei12 已提交
49 50
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t ids_numel = ids_t->numel();
51

T
tangwei12 已提交
52 53
    std::vector<int64_t> ids;
    ids.reserve(ids_numel);
54

T
tangwei12 已提交
55 56 57 58
    if (ids_t->type() == framework::proto::VarType::INT32) {
      std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_numel,
                     std::back_inserter(ids),
                     [&](int id) { return static_cast<int64_t>(id); });
59
    } else {
T
tangwei12 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      framework::TensorToVector(*ids_t, &ids);
    }

    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
77 78 79 80 81
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
T
tangwei12 已提交
82 83
          PADDLE_ENFORCE_GE(
              ids[i], 0,
84 85 86 87 88
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
T
tangwei12 已提交
89 90
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
91
        }
T
tangwei12 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105
      }
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
106 107 108 109
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
T
tangwei12 已提交
110
          auto id_index = table_t.Index(ids[i]);
111 112 113 114 115
          PADDLE_ENFORCE_GE(
              id_index, 0,
              platform::errors::InvalidArgument(
                  "the input key should be exists. But received %d.",
                  id_index));
T
tangwei12 已提交
116 117
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        }
      }
    }
  }
};

template <typename T>
class LookupTableV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
136
      PADDLE_THROW(platform::errors::InvalidArgument(
137
          "The parameter W of a LookupTableV2 "
138
          "must be either LoDTensor or SelectedRows"));
139 140 141 142 143 144 145
    }

    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_sparse = context.Attr<bool>("is_sparse");
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
T
tangwei12 已提交
146
      auto *ids_t = context.Input<LoDTensor>("Ids");
147 148
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
T
tangwei12 已提交
149 150 151 152
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);
153

T
tangwei12 已提交
154 155 156 157 158 159 160
      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
161

T
tangwei12 已提交
162
      d_table->set_rows(ids);
163 164 165 166 167 168 169 170 171 172 173 174

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table_dim[1]});

      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
175 176 177
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
178 179 180 181 182 183
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
184 185 186
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());

    } else {
T
tangwei12 已提交
187
      auto *ids_t = context.Input<LoDTensor>("Ids");
188 189
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
T
tangwei12 已提交
190 191 192 193 194 195 196 197 198 199 200 201
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);

      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
202

T
tangwei12 已提交
203
      auto *ids_data = ids.data();
204 205 206 207 208 209 210 211 212

      int64_t N = table_dim[0];
      int64_t D = table_dim[1];

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());

      memset(d_table_data, 0, d_table->numel() * sizeof(T));

T
tangwei12 已提交
213
      for (int64_t i = 0; i < ids_num; ++i) {
214 215 216 217 218 219
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
220 221 222 223 224
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
225 226
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
227 228 229 230 231
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
232 233 234 235 236 237 238 239 240 241 242
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle