math_kernel.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/pten/kernels/math_kernel.h"

#include "paddle/pten/api/ext/dispatch.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/core/kernel_registry.h"
21 22 23 24

#include "paddle/pten/kernels/cpu/elementwise_impl.h"
#include "paddle/pten/kernels/funcs/elementwise_functor.h"

25 26 27 28 29 30 31 32 33 34
#include "paddle/pten/kernels/hybird/eigen/reduce.h"
#include "paddle/pten/kernels/hybird/general/reduce_impl.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex.h"

namespace pten {

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#define DEFINE_CPU_ELEMENTWISE_OP(name)                                     \
  template <typename T, typename Context>                                   \
  void name##Kernel(const Context& dev_ctx,                                 \
                    const DenseTensor& x,                                   \
                    const DenseTensor& y,                                   \
                    int axis,                                               \
                    DenseTensor* out) {                                     \
    out->mutable_data<T>();                                                 \
    if (x.dims() == y.dims()) {                                             \
      SameDimsElementwiseCompute<SameDims##name##Functor<CPUContext, T>>()( \
          dev_ctx, x, y, out);                                              \
    } else {                                                                \
      auto x_dims = x.dims();                                               \
      auto y_dims = y.dims();                                               \
      if (x_dims.size() >= y_dims.size()) {                                 \
        ElementwiseCompute<funcs::name##Functor<T>, T>(                     \
            dev_ctx, x, y, axis, funcs::name##Functor<T>(), out);           \
      } else {                                                              \
        ElementwiseCompute<funcs::Inverse##name##Functor<T>, T>(            \
            dev_ctx, x, y, axis, funcs::Inverse##name##Functor<T>(), out);  \
      }                                                                     \
    }                                                                       \
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  }

template <typename T, typename Context>
void Mean(const Context& dev_ctx,
          const DenseTensor& x,
          const std::vector<int64_t>& dims,
          bool keep_dim,
          bool reduce_all,
          DenseTensor* out) {
  auto out_dtype = x.dtype();
  pten::general::Reduce<CPUContext, T, pten::eigen::MeanFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void DivideKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  int axis,
                  DenseTensor* out) {
  // allocate memory for out
  out->mutable_data<T>();
  if (x.dims() == y.dims() && std::is_floating_point<T>::value) {
80
    SameDimsElementwiseCompute<SameDimsDivideFunctor<CPUContext, T>>()(
81 82 83 84 85
        dev_ctx, x, y, out);
  } else {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    if (x_dims.size() >= y_dims.size()) {
86 87
      ElementwiseCompute<funcs::DivideFunctor<T>, T>(
          dev_ctx, x, y, axis, funcs::DivideFunctor<T>(), out);
88
    } else {
89 90
      ElementwiseCompute<funcs::InverseDivideFunctor<T>, T>(
          dev_ctx, x, y, axis, funcs::InverseDivideFunctor<T>(), out);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    }
  }
}

template <typename T, typename Context>
void Sum(const Context& dev_ctx,
         const DenseTensor& x,
         const std::vector<int64_t>& dims,
         bool keep_dim,
         bool reduce_all,
         DataType out_dtype,
         DenseTensor* out) {
  pten::general::Reduce<CPUContext, T, pten::eigen::SumFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

// Create the definition of Add
DEFINE_CPU_ELEMENTWISE_OP(Add)

// Create the definition of Subtract
DEFINE_CPU_ELEMENTWISE_OP(Subtract)

// Create the definition of Multiply
DEFINE_CPU_ELEMENTWISE_OP(Multiply)

}  // namespace pten

using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

// NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16
// using bfloat16 = ::paddle::platform::bfloat16;
PT_REGISTER_CTX_KERNEL(mean, CPU, ALL_LAYOUT, pten::Mean, float, double, bool) {
}
PT_REGISTER_CTX_KERNEL(add,
                       CPU,
                       ALL_LAYOUT,
                       pten::AddKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(subtract,
                       CPU,
                       ALL_LAYOUT,
                       pten::SubtractKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(divide,
                       CPU,
                       ALL_LAYOUT,
                       pten::DivideKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(multiply,
                       CPU,
                       ALL_LAYOUT,
                       pten::MultiplyKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       bool,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(sum,
                       CPU,
                       ALL_LAYOUT,
                       pten::Sum,
                       bool,
                       float,
                       double,
                       paddle::platform::float16,
                       int,
                       int64_t,
                       complex64,
                       complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}