conv_op.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include <glog/logging.h>
C
chengduoZH 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
19 20 21 22

#include <string>
#include <vector>

23 24 25 26 27 28
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
35
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
37
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
39
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40

D
dzhwinter 已提交
41
  VLOG(3) << "Conv op infershape";
C
chengduoZH 已提交
42 43
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
44

C
chengduoZH 已提交
45 46 47
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
48
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
D
dzhwinter 已提交
49 50 51 52 53
  VLOG(3) << "Conv op Before check";
  in_dims.size() == 4 || in_dims.size() == 5;
  //PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
  //               "Conv intput should be 4-D or 5-D tensor.");
  VLOG(3) << "check0";
C
chengduoZH 已提交
54

D
dzhwinter 已提交
55 56 57 58 59
  //PADDLE_ENFORCE_EQ(
  //    in_dims.size(), filter_dims.size(),
  //    "Conv input dimension and filter dimension should be the same.");
  in_dims.size() == filter_dims.size();
  VLOG(3) << "enforce check0";
C
chengduoZH 已提交
60 61 62
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
D
dzhwinter 已提交
63
    VLOG(3) << "check1";
C
chengduoZH 已提交
64 65 66
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
D
dzhwinter 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  
  VLOG(3) << "check2";
  //in_dims[1] == filter_dims[1] * groups;
  //PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
  //                  "The number of input channels should be equal to filter "
  //                  "channels * groups.");
    VLOG(3) << "check3";
    //filter_dims[0] % groups == 0 ;
  //PADDLE_ENFORCE_EQ(
  //    filter_dims[0] % groups, 0,
  //    "The number of output channels should be divided by groups.");
    VLOG(3) << "filter" << filter_dims.size();
    VLOG(3) << "filter" << filter_dims[0];
  VLOG(3) << "check4";
  VLOG(3) << "filter" << filter_dims[1];
  VLOG(3) << "dims" << in_dims[0];
C
chengduoZH 已提交
83 84

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
D
dzhwinter 已提交
85
  VLOG(3) << "output shape";
C
chengduoZH 已提交
86
  for (size_t i = 0; i < strides.size(); ++i) {
D
dzhwinter 已提交
87
      VLOG(3) << "check5";
Y
Yang Yang 已提交
88 89 90
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
D
dzhwinter 已提交
91
      VLOG(3) << "check pass";
C
chengduoZH 已提交
92
  }
D
dzhwinter 已提交
93
  VLOG(3) << "Conv InferShape Pass";
94
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
95
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
96 97
}

98 99
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
100
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
101
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
102
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
103 104
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
105
#ifdef PADDLE_WITH_CUDA
106
  if (platform::CanCUDNNBeUsed(ctx)) {
107
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
108 109
  }
#endif
110
#ifdef PADDLE_WITH_MKLDNN
111
  if (library == framework::LibraryType::kPlain &&
112
      platform::CanMKLDNNBeUsed(ctx)) {
113
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
114
    layout = framework::DataLayout::kMKLDNN;
115
  }
116
#endif
117

K
Kexin Zhao 已提交
118 119 120 121 122 123 124 125
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
  auto filter_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
126
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
127 128 129
                      "float16 can only be used when CUDNN is used");
  }

130 131
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
132 133
}

Y
Yu Yang 已提交
134
void Conv2DOpMaker::Make() {
C
chengduoZH 已提交
135 136
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
137 138 139 140
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
141
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
142
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
143 144
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
145 146
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
147
           "input image channels divided by the groups.");
148 149 150 151 152
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
153
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
154
            "(Tensor) The output tensor of convolution operator. "
155 156
            "The format of output tensor is also NCHW.")
      .Reuse("Input");
C
chengduoZH 已提交
157 158 159 160
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
161
      .SetDefault({1, 1});
C
chengduoZH 已提交
162 163 164 165
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
166 167 168
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
169
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
170 171 172 173
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
174
      .SetDefault(1);
C
chengduoZH 已提交
175
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
176 177
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
178
                            "convolution operator.")
C
chengduoZH 已提交
179
      .SetDefault({1, 1});
180 181 182 183
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
184 185 186
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
chengduoZH 已提交
203
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
204 205
Convolution Operator.

C
chengduoZH 已提交
206
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
207
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
208
parameters is checked in the infer-shape.
C
chengduoZH 已提交
209
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
210
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
211 212 213 214 215 216
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
217 218 219 220
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
221 222
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
223
  Output:
C
chengduoZH 已提交
224 225 226 227 228 229
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
230
)DOC");
C
chengduoZH 已提交
231 232
}

Y
Yu Yang 已提交
233
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
234 235
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
236
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
237
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
238 239 240
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
241
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
242
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
243 244
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
245 246 247
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
248 249
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
250
            "(Tensor) The output tensor of convolution operator."
251 252
            "The format of output tensor is also NCDHW.")
      .Reuse("Input");
C
chengduoZH 已提交
253 254 255 256
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
257
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
258 259 260 261
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
262 263 264
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
265
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
266 267 268 269
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
270
      .SetDefault(1);
C
chengduoZH 已提交
271
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
272 273
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
274
                            "convolution operator.")
C
chengduoZH 已提交
275
      .SetDefault({1, 1, 1});
276 277 278 279
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
280 281 282
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
fix doc  
chengduoZH 已提交
298

C
chengduoZH 已提交
299
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
300 301
Convolution3D Operator.

C
chengduoZH 已提交
302
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
303
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
304
parameters is checked in the infer-shape.
C
chengduoZH 已提交
305
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
306
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
307 308 309 310 311 312
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
313 314 315 316
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
317 318
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
319
  Output:
C
chengduoZH 已提交
320 321 322 323 324 325 326
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
327 328 329
)DOC");
}

C
chengduoZH 已提交
330 331 332 333 334 335 336 337 338 339 340
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

341 342
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
343
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
344 345 346 347
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
348
#ifdef PADDLE_WITH_CUDA
349 350
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
351 352
  }
#endif
353 354 355 356
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
357
    layout_ = framework::DataLayout::kMKLDNN;
358
  }
359
#endif
360 361 362 363 364 365

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
366 367 368 369
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
370
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
371 372
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
373 374

// depthwise convolution op
Y
Yang Yang 已提交
375
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
376 377
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
Y
Yang Yang 已提交
378
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
379 380
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
381

382 383
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
384
REGISTER_OP_CPU_KERNEL(
385
    depthwise_conv2d,
X
xzl 已提交
386 387 388 389
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
390
    depthwise_conv2d_grad,
X
xzl 已提交
391 392
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
393

C
chengduoZH 已提交
394
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
395 396 397 398 399 400
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
401 402

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
403 404 405 406 407 408
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);