matmul.h 5.1 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
A
Abhinav Arora 已提交
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/math_function.h"
M
Markus Kliegl 已提交
19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {
namespace math {

// Implements the logic of numpy matmul:
// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
//
// but allowing also for a, b to be transposed
//
// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported
// yet.
Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
32 33
class MatMulFunctor {
 public:
Q
QI JUN 已提交
34 35 36
  void operator()(const DeviceContext& context, const framework::Tensor& a,
                  bool trans_a, const framework::Tensor& b, bool trans_b,
                  T alpha, framework::Tensor* out, T beta) {
M
Markus Kliegl 已提交
37 38 39 40 41 42 43 44 45
    auto dim_a = a.dims();
    auto dim_b = b.dims();

    PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(),
                   "Tensors must all be in the same place.");
    PADDLE_ENFORCE_GE(dim_a.size(), 1,
                      "Input tensor a must be at least 1-dimensional.");
    PADDLE_ENFORCE_GE(dim_b.size(), 1,
                      "Input tensor b must be at least 1-dimensional.");
C
chengduoZH 已提交
46 47 48 49

    std::vector<int64_t> out_dim;
    int64_t batch_count = 1;
    if (dim_a.size() > 3) {
C
chengduoZH 已提交
50
      PADDLE_ENFORCE(dim_b.size() == dim_a.size(),
C
chengduoZH 已提交
51
                     "The dimensions of X and Y must be the same, and both of "
C
chengduoZH 已提交
52 53
                     "them should be %d-dimensional.",
                     dim_b.size());
C
chengduoZH 已提交
54
      // The first rank-2 dimensions are accumulated on the batch_count, and the
C
chengduoZH 已提交
55
      // last two dimensions are used for matrix multiplication.
C
chengduoZH 已提交
56
      for (int j = 0; j < dim_a.size() - 2; ++j) {
C
chengduoZH 已提交
57 58 59
        PADDLE_ENFORCE_EQ(dim_b[j], dim_a[j],
                          "The %d-th dimension of X and Y must be the same.",
                          j);
C
chengduoZH 已提交
60 61 62 63
        out_dim.push_back(dim_a[j]);
        batch_count *= dim_a[j];
      }
    }
M
Markus Kliegl 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0,
        strideA = 0, strideB = 0;

    switch (dim_a.size()) {
      case 1:
        // similar to np.matmul:
        // prepend dimension 1 (no transpose) or append dimension 1 (transpose)
        M = trans_a ? dim_a[0] : 1;
        kA = trans_a ? 1 : dim_a[0];
        break;
      case 2:
        M = trans_a ? dim_a[1] : dim_a[0];
        kA = trans_a ? dim_a[0] : dim_a[1];
        break;
      case 3:
        batchCountA = dim_a[0];
        M = trans_a ? dim_a[2] : dim_a[1];
        kA = trans_a ? dim_a[1] : dim_a[2];
        strideA = M * kA;
        break;
      default:
C
chengduoZH 已提交
86 87 88 89 90
        batchCountA = batch_count;
        size_t mat_s = dim_a.size() - 2;
        M = trans_a ? dim_a[mat_s + 1] : dim_a[mat_s];
        kA = trans_a ? dim_a[mat_s] : dim_a[mat_s + 1];
        strideA = M * kA;
M
Markus Kliegl 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    }

    switch (dim_b.size()) {
      case 1:
        // similar to np.matmul:
        // append dimension 1 (no transpose) or prepend dimension 1 (transpose)
        kB = trans_b ? 1 : dim_b[0];
        N = trans_b ? dim_b[0] : 1;
        break;
      case 2:
        kB = trans_b ? dim_b[1] : dim_b[0];
        N = trans_b ? dim_b[0] : dim_b[1];
        break;
      case 3:
        batchCountB = dim_b[0];
        kB = trans_b ? dim_b[2] : dim_b[1];
        N = trans_b ? dim_b[1] : dim_b[2];
        strideB = kB * N;
        break;
      default:
C
chengduoZH 已提交
111 112 113 114 115
        batchCountB = batch_count;
        size_t mat_s = dim_b.size() - 2;
        kB = trans_b ? dim_b[mat_s + 1] : dim_b[mat_s];
        N = trans_b ? dim_b[mat_s] : dim_b[mat_s + 1];
        strideB = kB * N;
M
Markus Kliegl 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    }

    PADDLE_ENFORCE_EQ(
        kA, kB,
        "First matrix's width must be equal with second matrix's height.");
    if (batchCountA && batchCountB) {
      PADDLE_ENFORCE_EQ(
          batchCountA, batchCountB,
          "When input tensors a and b are both batched, they must have the "
          "same batch dimension.");
    }
    int batchCount = std::max(batchCountA, batchCountB);

    CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
    CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;

    if (!batchCount) {
      // regular matrix multiplication
Y
Yu Yang 已提交
134 135 136
      Blas<DeviceContext>(context).GEMM(transA, transB, M, N, kA, alpha,
                                        a.data<T>(), b.data<T>(), beta,
                                        out->data<T>());
M
Markus Kliegl 已提交
137 138
    } else {
      // batched matrix multiplication
Q
QI JUN 已提交
139 140 141
      batched_gemm<DeviceContext, T>(
          context, transA, transB, M, N, kA, alpha, a.data<T>(), b.data<T>(),
          beta, out->data<T>(), batchCount, strideA, strideB);
M
Markus Kliegl 已提交
142 143 144 145 146 147 148
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle