transpose_op.cc 4.2 KB
Newer Older
X
xzl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
X
xzl 已提交
28 29 30 31
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
32
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
X
xzl 已提交
33
    size_t x_rank = x_dims.size();
X
xzl 已提交
34
    size_t axis_size = axis.size();
X
xzl 已提交
35

X
xzl 已提交
36
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
37
                      "the input tensor's rank(%d) "
38
                      "should be equal to the axis's size(%d)",
X
xzl 已提交
39
                      x_rank, axis_size);
40 41 42 43 44 45 46 47

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          "Each element of Attribute axis should be a unique value "
          "range from 0 to (dims - 1), "
          "where the dims is the axis's size");
X
xzl 已提交
48
    }
X
xzl 已提交
49

X
xzl 已提交
50
    framework::DDim out_dims(x_dims);
51
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
52
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
53
    }
X
xzl 已提交
54
    ctx.Output<framework::LoDTensor>("Out")->Resize(out_dims);
X
xzl 已提交
55 56 57 58 59 60 61 62
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TransposeOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
63
    AddInput(
X
xzl 已提交
64
        "X",
65
        "(Tensor)The input tensor, tensors with rank at most 6 are supported");
X
xzl 已提交
66
    AddOutput("Out", "(Tensor)The output tensor");
X
xzl 已提交
67 68
    AddAttr<std::vector<int>>(
        "axis",
69
        "(vector<int>)a list of values, and the size of the list should be "
70
        "the same with the input tensor rank, the tensor will "
X
xzl 已提交
71
        "permute the axes according the the values given");
X
xzl 已提交
72
    AddComment(R"DOC(
X
xzl 已提交
73
The Tensor will be permuted according to the axis values given.
74 75 76 77 78 79 80 81 82 83 84 85 86
The op is very much like the numpy.transpose function in python
For example:
 >> input = numpy.arange(6).reshape((2,3))
 >> input
 array([[0, 1, 2],
        [3, 4, 5]])
 >> axis = [1, 0]
 >> output = input.transpose(axis)
 >> output 
 array([[0, 3],
        [1, 4],
		[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
X
xzl 已提交
87 88 89 90 91 92 93 94 95 96 97
the output tensor shape will be (N, H, W, C)
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
X
xzl 已提交
98 99 100 101 102 103 104 105
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto *x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));

    if (x_grad) x_grad->Resize(x_dims);
X
xzl 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
REGISTER_OP_CPU_KERNEL(transpose,
                       ops::TransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
    ops::TransposeGradKernel<paddle::platform::CPUPlace, float>);