operator.h 13.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
25
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/platform/variant.h"
Q
qijun 已提交
31
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
/// If a variable is a empty variable, that name will be used.
37
constexpr char kEmptyVarName[] = "@EMPTY@";
38 39 40

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
41
constexpr char kTempVarName[] = "@TEMP@";
42 43 44 45

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
46
constexpr char kGradVarSuffix[] = "@GRAD";
47 48

/// Variables with this suffix are supposed to be filled up with zeros.
49
constexpr char kZeroVarSuffix[] = "@ZERO";
50 51 52 53 54

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
67 68
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
69

Q
Qiao Longfei 已提交
70 71 72
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
73
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
74 75 76 77 78
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80 81 82

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
83
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
86
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
87 88
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
89 90
  virtual bool IsNetOp() const { return false; }

91 92
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
93 94 95
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
96 97
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
98

Y
Yu Yang 已提交
99
  //! Get a input with argument's name described in `op_proto`
100
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
101
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
102
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
103

Q
qijun 已提交
104 105
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
106
  //! Get a output with argument's name described in `op_proto`
107
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
108 109
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
110
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
111

Y
Yu Yang 已提交
112
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
113

Q
qiaolongfei 已提交
114
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
115
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
116 117
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
118
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
119 120
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
121

Q
qiaolongfei 已提交
122
 protected:
Q
Qiao Longfei 已提交
123
  std::string type_;
D
dongzhihong 已提交
124
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
125
  // I (Inputs)opear
D
dongzhihong 已提交
126 127
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
128
  VariableNameMap inputs_;
Y
Yu Yang 已提交
129

D
dongzhihong 已提交
130 131
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
132
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
133
  AttributeMap attrs_;
134 135 136 137

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
138 139
};

Y
Yu Yang 已提交
140 141
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
142
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
143
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
144
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
145
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
146
  }
Y
Yu Yang 已提交
147

Y
Yu Yang 已提交
148 149 150 151
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
152 153
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
154 155 156
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
157
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
158

159 160
class NOP : public OperatorBase {
 public:
161
  using OperatorBase::OperatorBase;
162 163 164
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
165 166 167
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
168 169
};

170
class InferShapeContext {
Y
Yan Chunwei 已提交
171
 public:
172 173
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
174

Q
qiaolongfei 已提交
175 176 177 178
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
179
  template <typename T>
Y
Yu Yang 已提交
180 181
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
182 183
  }

Y
Yu Yang 已提交
184
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
185
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
186 187
  }

Y
Yu Yang 已提交
188
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
189
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
190 191
  }

192
  const Variable* InputVar(const std::string& name) const {
193
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
194
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
195 196
  }

197
  Variable* OutputVar(const std::string& name) const {
198
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
199
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
200 201
  }

202 203
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
204 205
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
206
    res.reserve(names.size());
207 208
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
209 210
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
211
                   });
Y
Yan Chunwei 已提交
212 213 214
    return res;
  }

215
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
216 217
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
218
    res.reserve(names.size());
219 220
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
221 222
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
223
                   });
Y
Yan Chunwei 已提交
224 225 226
    return res;
  }

227 228
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
229
    auto* var = InputVar(name);
230
    return var == nullptr ? nullptr : &var->Get<T>();
231 232 233 234
  }

  template <typename T>
  T* Output(const std::string& name) const {
235
    auto var = OutputVar(name);
236
    return var == nullptr ? nullptr : var->GetMutable<T>();
237 238 239 240 241 242 243 244
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
245
                   [&](const std::string& sub_name) {
246
                     auto var = scope_.FindVar(sub_name);
247
                     return var == nullptr ? nullptr : &var->Get<T>();
248 249 250 251 252
                   });
    return res;
  }

  template <typename T>
253
  std::vector<T*> MultiOutput(const std::string& name) const {
254
    auto names = op_.Outputs(name);
255
    std::vector<T*> res;
256 257
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
258
                   [&](const std::string& sub_name) {
259
                     auto var = scope_.FindVar(sub_name);
260
                     return var == nullptr ? nullptr : var->GetMutable<T>();
261 262 263 264
                   });
    return res;
  }

265
  const Tensor* GetTensorFromVar(const Variable* var) const {
266
    if (var->IsType<LoDTensor>()) {
267
      return &var->Get<LoDTensor>();
268 269 270
    }
    PADDLE_ENFORCE(var->IsType<Tensor>(),
                   "The Input(%s) must be LoDTensor or Tensor.");
271
    return &var->Get<Tensor>();
272 273
  }

Q
qiaolongfei 已提交
274
 private:
275
  const OperatorBase& op_;
276
  const Scope& scope_;
277 278
};

279 280 281 282 283 284 285
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
    const std::string& name) const;

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

301
class ExecutionContext : public InferShapeContext {
302
 public:
303
  ExecutionContext(const OperatorBase& op, const Scope& scope,
304
                   const platform::DeviceContext& device_context)
305
      : InferShapeContext(op, scope), device_context_(device_context) {}
306

Q
qijun 已提交
307 308 309
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
310
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
311

312
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
313

314
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
315
    return device_context_;
Q
qijun 已提交
316
  }
Q
qijun 已提交
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  // redefine Output function,
  // use Variable::Get instead of Variable::GetMutable
  template <typename T>
  T* Output(const std::string& name) const {
    auto var = OutputVar(name);
    return var == nullptr ? nullptr : const_cast<T*>(&var->Get<T>());
  }

  // redefine MultiOutput function.
  // use Variable::Get instead of Variable::GetMutable
  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto names = op().Outputs(name);
    std::vector<T*> res;
    res.reserve(names.size());
    std::transform(
        names.begin(), names.end(), std::back_inserter(res),
        [&](const std::string& sub_name) { return Output<T>(sub_name); });
    return res;
  }

339 340
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
341 342
};

343 344 345 346 347 348 349
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Q
qijun 已提交
350 351
class OpKernel {
 public:
Q
qijun 已提交
352
  /**
353
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
354 355
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
356
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
357 358
   */

359
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
360 361 362 363

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
364 365
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
366 367
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
368

Y
Yu Yang 已提交
369
    OpKernelKey() = default;
L
liaogang 已提交
370
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
371 372 373
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
374 375 376
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
377 378 379 380 381 382 383 384 385 386 387
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
388

Y
Yu Yang 已提交
389 390
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
391 392
      : OperatorBase(type, inputs, outputs, attrs) {}

393
  void InferShape(const Scope& scope) const override {
394
    InferShape(InferShapeContext(*this, scope));
395 396
  }

Y
Yu Yang 已提交
397
  void Run(const Scope& scope,
Y
Yu Yang 已提交
398
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
399
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
400
    opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
Q
Qiao Longfei 已提交
401 402
  }

Y
Yu Yang 已提交
403 404 405 406
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
407
  }
Y
Yan Chunwei 已提交
408

409 410 411 412 413 414
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
415
 protected:
416
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
417 418 419 420
};

}  // namespace framework
}  // namespace paddle