dropout_op.h 3.1 KB
Newer Older
X
Xinghai Sun 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14 15

#pragma once
16
#include <random>
X
Xinghai Sun 已提交
17 18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T, typename AttrType>
29
class CPUDropoutKernel : public framework::OpKernel<T> {
30 31 32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
34
    const auto* x_data = x->data<T>();
35
    auto* y_data = y->mutable_data<T>(context.GetPlace());
36
    float dropout_prob = context.Attr<float>("dropout_prob");
37

38
    if (!context.Attr<bool>("is_test")) {
39 40
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
41 42 43
      int seed = context.Attr<int>("seed");
      std::minstd_rand engine;
      engine.seed(seed);
44
      std::uniform_real_distribution<float> dist(0, 1);
45 46 47 48 49 50 51 52 53
      size_t size = framework::product(mask->dims());
      for (size_t i = 0; i < size; ++i) {
        if (dist(engine) < dropout_prob) {
          mask_data[i] = 0;
          y_data[i] = 0;
        } else {
          mask_data[i] = 1;
          y_data[i] = x_data[i];
        }
54
      }
55 56 57
    } else {
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
Q
QI JUN 已提交
58 59
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
60
      Y.device(place) = X * (1.0f - dropout_prob);
61 62 63 64
    }
  }
};

Q
QI JUN 已提交
65
template <typename DeviceContext, typename T>
66
class DropoutGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
67 68
 public:
  void Compute(const framework::ExecutionContext& context) const override {
69 70
    PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
71

X
Xinghai Sun 已提交
72 73 74 75 76
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());

77 78 79
    auto M = EigenMatrix<T>::Reshape(*mask, 1);
    auto dX = EigenMatrix<T>::Reshape(*grad_x, 1);
    auto dY = EigenMatrix<T>::Reshape(*grad_y, 1);
X
Xinghai Sun 已提交
80

Q
QI JUN 已提交
81 82
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
83
    dX.device(place) = dY * M;
X
Xinghai Sun 已提交
84 85 86 87 88
  }
};

}  // namespace operators
}  // namespace paddle
新手
引导
客服 返回
顶部