backward.cc 22.2 KB
Newer Older
Y
Yu Yang 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

F
fengjiayi 已提交
18
#include <deque>
D
dongzhihong 已提交
19
#include <list>
20
#include <memory>
Y
Yu Yang 已提交
21
#include <unordered_set>
22

F
fengjiayi 已提交
23
#include "paddle/framework/block_desc.h"
24
#include "paddle/framework/op_registry.h"
25
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
26 27 28 29

namespace paddle {
namespace framework {

30 31 32 33 34 35
static std::unordered_set<std::string>* g_ctrl_flow_ops_ = nullptr;
// Control Flow operators's backward is significantly different from
// computational operators. Hack Code here.
// We should design a better way to backward CtrlFlowOps.
static std::unordered_set<std::string>& CtrlFlowOps() {
  if (g_ctrl_flow_ops_ == nullptr) {
36 37
    g_ctrl_flow_ops_ = new std::unordered_set<std::string>{
        "increment", "lod_rank_table", "less_than"};
38 39 40 41
  }
  return *g_ctrl_flow_ops_;
}

Y
Yu Yang 已提交
42
static inline std::unique_ptr<OperatorBase> CreateGradOp(
43 44
    const OperatorBase& op, const std::unordered_set<std::string>& no_grad_set,
    std::unordered_map<std::string, std::string>* grad_to_var) {
45
  OpDesc op_desc;
Y
Yu Yang 已提交
46 47 48 49 50
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
51
  auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, {});
Y
Yu Yang 已提交
52 53
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
Y
Yu Yang 已提交
54 55
  std::transform(grad_descs.begin(), grad_descs.end(),
                 std::back_inserter(grad_ops),
56
                 [](const std::unique_ptr<OpDesc>& grad_desc) {
Y
Yu Yang 已提交
57
                   return OpRegistry::CreateOp(*grad_desc);
Y
Yu Yang 已提交
58
                 });
Y
Yu Yang 已提交
59
  PADDLE_ENFORCE(!grad_ops.empty());
Y
Yu Yang 已提交
60 61 62 63 64 65 66
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
Y
Yu Yang 已提交
67
    net_op->CompleteAddOp();
Y
Yu Yang 已提交
68 69 70 71
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
72
template <typename Map, typename T>
Q
qiaolongfei 已提交
73
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
74
  for (auto& name : names) {
Y
Yu Yang 已提交
75
    for (auto& n : name.second) {
76
      if (callback(n)) return;
Y
Yu Yang 已提交
77 78
    }
  }
Y
Yu Yang 已提交
79 80
}

81
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
82
static bool AllInSet(
Y
Yu Yang 已提交
83
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
84
    const std::string& suffix, const std::unordered_set<std::string>& set) {
85 86 87 88
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
89
  });
90
  return all_in_set;
Y
Yu Yang 已提交
91 92
}

93 94
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
95
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
96
  net_op->CompleteAddOp();
97
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
98 99
}

100
//  Get backward operator from a forward operator, a recursive implementation.
101 102 103
//
//  no_grad_names the gradient variable names without gradient calculating.
//
104 105 106
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
107
//
108 109
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
110 111
//
//  See Backward.h for details
112
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
113
    const OperatorBase& forwardOp,
114 115 116
    std::unordered_set<std::string>& no_grad_names,
    std::unordered_map<std::string, std::string>* grad_to_var,
    size_t& uniq_id) {
117 118
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
119
  //  too much time for calculation, but it is useful for simplifying logic.
120
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
121
               no_grad_names /*set*/)) {
122
    return NOP();
Y
Yu Yang 已提交
123 124
  }

125 126
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
127
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
128
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
129
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
130
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
131 132 133 134
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
135
    return NOP();
Y
Yu Yang 已提交
136 137
  }

138
  // Returned gradient network
139
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
140 141

  if (forwardOp.IsNetOp()) {
142
    // Because forwardOp is a net op, it can static_cast.
143
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
144

145
    // Map from output gradient variable name to operator's indices in
146
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
147 148 149
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
150
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
151
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
152
         ++it, ++local_op_id) {
153
      auto& fwd = *it;
154
      auto bwd = BackwardRecursive(*fwd, no_grad_names, grad_to_var, uniq_id);
Q
qiaolongfei 已提交
155
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
156 157 158 159
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
160
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
161
    }
162
    // Get unique ID for this method.
D
dongzhihong 已提交
163
    auto uid = uniq_id++;
D
dongzhihong 已提交
164
    // TODO(dzh): more comment
165 166 167 168 169
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
170
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
171
    std::list<Pos> insert_position;
D
dongzhihong 已提交
172
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
173
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
174 175 176
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
177
      auto& dup_op = dup_output_op.second;
178
      // no duplicate output
D
dongzhihong 已提交
179 180
      if (dup_op.size() == 1) continue;

181 182
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
183
      for (size_t i = 0; i < dup_op.size(); ++i) {
184
        // rename each duplicate output to an alias
D
dongzhihong 已提交
185
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
186 187 188
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
189
      }
190 191 192
      // collect all the offset for each alias,
      // insert a sum operator to add all aliases to output
      insert_position.push_back(
Y
Yiqun Liu 已提交
193 194 195
          {dup_op.back(),
           OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, {{"Out", {name}}},
                                AttributeMap{})});
D
dongzhihong 已提交
196
    }
Y
Yu Yang 已提交
197

198
    // make sure the inserted `sum` ops follow the BFS order.
Y
Yu Yang 已提交
199
    insert_position.sort(
D
dongzhihong 已提交
200
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
201 202

    for (auto& pos : insert_position) {
203
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
204
    }
Y
Yu Yang 已提交
205
  } else {
206
    std::unique_ptr<OperatorBase> grad_op(
207
        CreateGradOp(forwardOp, no_grad_names, grad_to_var));
Y
Yu Yang 已提交
208

209 210
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
211
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
212
        // +1 for \0
213
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
214
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
215
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
216 217 218

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
219
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
F
fengjiayi 已提交
220
                                           {{"Out", {grad_input}}},
Y
Yiqun Liu 已提交
221
                                           AttributeMap{}));
222
      }
Y
Yu Yang 已提交
223 224 225
      return false;
    });

Q
qiaolongfei 已提交
226 227
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
228
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
229
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
230 231 232
                     }
                     return false;
                   });
Y
Yu Yang 已提交
233 234 235 236

    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
237
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
238
  }
Q
qiaolongfei 已提交
239
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
240
  net->CompleteAddOp();
241 242 243
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
244

245
// See header for comments
246
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
247
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
248 249
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
250
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
251

252
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
253

Y
Yu Yang 已提交
254
  for (auto& name : no_grad_vars) {
255
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
256
  }
Y
Yu Yang 已提交
257
  size_t uid = 0;
258 259
  std::unordered_map<std::string, std::string> grad_to_var;
  return BackwardRecursive(forwardOp, no_grad_names, &grad_to_var, uid);
Y
Yu Yang 已提交
260
}
Y
Yi Wang 已提交
261

262 263 264 265 266 267 268 269 270
// ====================================  //

static bool AllGradInSet(const std::vector<std::string>& names,
                         const std::unordered_set<std::string>& set) {
  for (const std::string& name : names) {
    if (!set.count(GradVarName(name))) {
      return false;
    }
  }
271 272 273 274 275 276 277 278 279 280 281 282 283
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "All input {";
    for (auto& name : names) {
      sout << name << ",";
    }
    sout << "} is in {";
    for (auto& name : set) {
      sout << name << ",";
    }
    sout << "}";
    VLOG(10) << sout.str();
  }
284 285 286
  return true;
}

Y
Yu Yang 已提交
287 288 289 290 291 292 293 294 295
static std::string FwdName(const std::string& grad_name) {
  auto pos = grad_name.find("@GRAD");
  if (pos == std::string::npos) {
    return "";
  } else {
    return grad_name.substr(0, pos);
  }
}

296
static void CreateGradVarInBlock(
297 298
    size_t grad_op_start_index,
    const std::unordered_map<std::string, std::string>& param_name_map,
299
    BlockDesc* block_desc,
300
    std::unordered_map<std::string, GradVarInfo>* grad_var_record) {
301 302 303
  auto ops = block_desc->AllOps();
  for (size_t op_index = grad_op_start_index; op_index < ops.size();
       ++op_index) {
Y
Yu Yang 已提交
304
    std::unordered_set<std::string> new_vars;
305
    auto& ctrl_flow_ops = CtrlFlowOps();
306 307
    ForEachVarName(ops[op_index]->Outputs(),
                   [&](const std::string& grad_var_name) {
308 309 310 311 312 313 314 315 316 317 318
                     if (ctrl_flow_ops.find(ops[op_index]->Type()) !=
                         ctrl_flow_ops.end()) {
                       if (block_desc->HasVarRecursive(grad_var_name)) {
                         return false;
                       }
                     } else {
                       if (block_desc->HasVar(grad_var_name)) {
                         return false;
                       }
                     }
                     if (grad_var_name == framework::kEmptyVarName) {
319 320
                       return false;
                     }
Q
Qiao Longfei 已提交
321
                     auto var = block_desc->Var(grad_var_name);
322
                     VLOG(10) << "Creating Variable " << grad_var_name;
Y
Yu Yang 已提交
323
                     new_vars.insert(var->Name());
324 325 326 327 328 329 330 331 332 333 334
                     auto it = param_name_map.find(grad_var_name);
                     if (it == param_name_map.end()) {
                       return false;
                     }
                     auto param_var_name = it->second;
                     auto& grad_record = (*grad_var_record)[param_var_name];
                     grad_record.name_ = grad_var_name;
                     grad_record.block_idx_ = block_desc->ID();
                     grad_record.op_idx_ = static_cast<int>(op_index);
                     return false; /* not break */
                   });
335 336 337 338 339 340 341 342 343
    ops[op_index]->InferVarType(block_desc);
    for (auto& arg : ops[op_index]->OutputArgumentNames()) {
      if (new_vars.find(arg) == new_vars.end()) {
        continue;
      }
      auto pname = FwdName(arg);
      auto* param = block_desc->FindVarRecursive(pname);
      auto* grad = block_desc->FindVar(arg);
      if (param == nullptr) {
344
        grad->SetDataType(proto::DataType::FP32);
345 346
      } else {
        grad->SetDataType(param->GetDataType());
Y
Yu Yang 已提交
347
      }
Q
Qiao Longfei 已提交
348
    }
349
    ops[op_index]->InferShape(*block_desc);
350 351 352
  }
}

353 354
std::vector<std::unique_ptr<OpDesc>> MakeOpGrad(
    const OpDesc* op_desc, std::unordered_set<std::string>* no_grad_vars,
355
    std::unordered_map<std::string, std::string>* grad_to_var,
356 357
    const std::vector<BlockDesc*>& grad_block = std::vector<BlockDesc*>()) {
  std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
358
  // All input gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
359
  const std::vector<std::string>& inputs = op_desc->InputArgumentNames();
360
  if (AllGradInSet(inputs, *no_grad_vars)) {
361
    VLOG(10) << "Drop operator  " << op_desc->Type();
362 363
    return grad_op_descs;  // empty vector
  }
364

365
  // All output gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
366
  const std::vector<std::string>& outputs = op_desc->OutputArgumentNames();
367

368
  if (AllGradInSet(outputs, *no_grad_vars)) {
369 370 371 372 373 374 375 376 377
    VLOG(10) << "Drop operator " << op_desc->Type();
    // FIXME: Hack code here
    auto& ctrl_flow_ops = CtrlFlowOps();
    if (ctrl_flow_ops.find(op_desc->Type()) == ctrl_flow_ops.end()) {
      // Only computational op need drop input's gradient.
      for (const std::string& name : inputs) {
        no_grad_vars->insert(GradVarName(name));
        VLOG(10) << " Also drop " << GradVarName(name);
      }
378
    }
379

380 381 382
    return grad_op_descs;  // empty vector
  }

383 384 385 386
  grad_op_descs =
      OpInfoMap::Instance()
          .Get(op_desc->Type())
          .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block);
387

388
  std::list<std::unique_ptr<OpDesc>> pending_fill_zeros_ops;
F
Update  
fengjiayi 已提交
389 390
  for (auto& desc : grad_op_descs) {
    for (const std::string& in_name : desc->InputArgumentNames()) {
391
      if (no_grad_vars->count(in_name)) {
392 393 394
        std::string prefix = in_name.substr(
            0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
        std::string new_name = prefix + kZeroVarSuffix;
F
Update  
fengjiayi 已提交
395
        desc->Rename(in_name, new_name);
396
        std::unique_ptr<OpDesc> fill_zeros_op(
F
fengjiayi 已提交
397 398
            new OpDesc("fill_zeros_like", {{"X", {prefix}}},
                       {{"Out", {new_name}}}, AttributeMap{}));
F
fengjiayi 已提交
399
        pending_fill_zeros_ops.push_back(std::move(fill_zeros_op));
400 401 402
      }
    }
  }
F
fengjiayi 已提交
403

F
fengjiayi 已提交
404
  for (auto& p : pending_fill_zeros_ops) {
F
fengjiayi 已提交
405
    grad_op_descs.insert(grad_op_descs.begin(), std::move(p));
F
fengjiayi 已提交
406
  }
407 408 409
  return grad_op_descs;
}

410 411
static BlockDesc* CreateStepBlock(
    ProgramDesc& program_desc, std::unordered_set<std::string>* no_grad_vars,
412 413 414
    std::unordered_map<std::string, std::string>* grad_to_var,
    int step_block_idx);

415 416
std::vector<std::unique_ptr<OpDesc>> MakeBlockBackward(
    ProgramDesc& program_desc, int block_idx,
417 418
    std::unordered_set<std::string>* no_grad_vars,
    std::unordered_map<std::string, std::string>* grad_to_var) {
419
  VLOG(5) << "MakeBlockBackward";
420 421
  BlockDesc* cur_block = program_desc.MutableBlock(block_idx);
  std::vector<OpDesc*> op_descs = cur_block->AllOps();
F
Update  
fengjiayi 已提交
422 423
  std::unordered_map<std::string, std::vector<size_t>> dup_out_ops;
  size_t grad_desc_idx = 0;
424
  std::vector<std::unique_ptr<OpDesc>> backward_descs;
425

F
fengjiayi 已提交
426
  for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
427
    VLOG(5) << "Making backward " << (*it)->Type() << " op";
428
    std::vector<std::unique_ptr<OpDesc>> op_grads;
F
fengjiayi 已提交
429

430
    if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") {
431
      int step_block_idx = (*it)->GetBlockAttr("sub_block");
432 433
      BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars,
                                                  grad_to_var, step_block_idx);
434 435
      op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
    } else if ((*it)->Type() == "conditional_block") {
436
      BlockDesc* backward_block =
437
          CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
438
                          (*it)->GetBlockAttr("sub_block"));
439 440 441
      op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
    } else {
      op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
442 443
    }

444 445 446 447 448 449 450 451 452
    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      sout << "Made ";
      for (auto& op_grad : op_grads) {
        sout << op_grad->Type() << " ";
      }
      VLOG(10) << sout.str();
    }

F
Update  
fengjiayi 已提交
453
    for (const auto& desc : op_grads) {
F
fengjiayi 已提交
454
      for (const std::string& out_name : desc->OutputArgumentNames()) {
455 456 457 458 459
        if (out_name.find("@GRAD") == std::string::npos) {
          // Not all outputs of a backward operator is a gradient. Only gradient
          // need to be sum. Skip variables are not gradient.
          continue;
        }
F
Update  
fengjiayi 已提交
460 461 462 463
        dup_out_ops[out_name].emplace_back(grad_desc_idx);
      }
      ++grad_desc_idx;
    }
464 465 466
    std::transform(op_grads.begin(), op_grads.end(),
                   std::back_inserter(backward_descs),
                   [](std::unique_ptr<OpDesc>& ptr) { return std::move(ptr); });
F
Update  
fengjiayi 已提交
467
  }
468 469

  VLOG(5) << "Appending Sums";
F
Update  
fengjiayi 已提交
470
  // Check whether some variables are written more than once
471
  std::list<std::pair<size_t, std::unique_ptr<OpDesc>>> pending_sum_ops;
F
Update  
fengjiayi 已提交
472 473 474 475 476
  for (const auto& dup : dup_out_ops) {
    const std::string& out_name = dup.first;
    const std::vector<size_t> dup_op = dup.second;
    if (out_name != kEmptyVarName && dup_op.size() > 1) {
      std::vector<std::string> sum_op_inputs;
477
      std::string next_g_name = out_name;
F
Update  
fengjiayi 已提交
478
      for (size_t i = 0; i < dup_op.size(); ++i) {
479 480
        VLOG(10) << backward_descs[dup_op[i]]->Type() << " has " << out_name
                 << " duplicated";
F
Update  
fengjiayi 已提交
481
        std::string new_name = out_name + "@RENAME@" + std::to_string(i);
482 483
        backward_descs[dup_op[i]]->RenameOutput(out_name, new_name);
        backward_descs[dup_op[i]]->RenameInput(out_name, next_g_name);
F
Update  
fengjiayi 已提交
484
        sum_op_inputs.emplace_back(new_name);
485
        next_g_name = sum_op_inputs.back();
F
Update  
fengjiayi 已提交
486
      }
487 488 489
      std::unique_ptr<OpDesc> sum_op(new OpDesc("sum", {{"X", sum_op_inputs}},
                                                {{"Out", {out_name}}},
                                                AttributeMap{}));
F
fengjiayi 已提交
490
      pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
F
Update  
fengjiayi 已提交
491 492
    }
  }
493

494 495 496 497
  pending_sum_ops.sort([](const std::pair<size_t, std::unique_ptr<OpDesc>>& a,
                          const std::pair<size_t, std::unique_ptr<OpDesc>>& b) {
    return a.first > b.first;
  });
F
Update  
fengjiayi 已提交
498
  for (auto& p : pending_sum_ops) {
F
Update  
fengjiayi 已提交
499 500
    backward_descs.insert(backward_descs.begin() + p.first + 1,
                          std::move(p.second));
F
Update  
fengjiayi 已提交
501
  }
502

503 504
  VLOG(5) << "MakeBlockBackward Finished";

F
fengjiayi 已提交
505 506 507
  return backward_descs;
}

508 509
static BlockDesc* CreateStepBlock(
    ProgramDesc& program_desc, std::unordered_set<std::string>* no_grad_vars,
510 511 512 513
    std::unordered_map<std::string, std::string>* grad_to_var,
    int step_block_idx) {
  auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx,
                                                   no_grad_vars, grad_to_var);
514
  BlockDesc* backward_block =
515 516 517 518 519 520 521
      program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
  for (auto& ptr : backward_block_op_descs) {
    backward_block->AppendAllocatedOp(move(ptr));
  }
  return backward_block;
}

522
ParamGradInfoMap AppendBackward(
523
    ProgramDesc& program_desc, const VarDesc& target,
524
    const std::unordered_set<std::string>& no_grad_vars) {
F
fengjiayi 已提交
525 526 527 528 529 530
  std::unordered_set<std::string> no_grad_var_names;
  no_grad_var_names.reserve(no_grad_vars.size() + 1);
  no_grad_var_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
  for (auto& name : no_grad_vars) {
    no_grad_var_names.insert(GradVarName(name));
  }
531

F
fengjiayi 已提交
532
  const int root_block_idx = 0;
533
  auto root_block = program_desc.MutableBlock(root_block_idx);
534 535

  std::string fill_one_op_out = GradVarName(target.Name());
536 537
  bool is_scalar = target.Shape() == std::vector<int64_t>{1};
  PADDLE_ENFORCE(is_scalar, "target should be scalar");
538 539
  VLOG(3) << "backward from loss=" << target.Name()
          << " data_type=" << target.GetDataType();
540 541 542 543 544
  std::unique_ptr<OpDesc> fill_one_op(
      new OpDesc("fill_constant", {}, {{"Out", {fill_one_op_out}}},
                 {{"shape", std::vector<int>{1}},
                  {"value", static_cast<float>(1.0)},
                  {"dtype", target.GetDataType()}}));
545 546 547
  // infer var type of fill_one_op
  fill_one_op->InferVarType(root_block);

548 549
  root_block->AppendAllocatedOp(std::move(fill_one_op));
  size_t forward_op_num = root_block->OpSize();
550
  size_t forward_block_num = program_desc.Size();
551 552

  // Insert backward operators
553 554 555
  std::unordered_map<std::string, std::string> grad_to_var;
  auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
                                             &no_grad_var_names, &grad_to_var);
556

F
fengjiayi 已提交
557
  for (auto& ptr : backward_op_descs) {
558
    root_block->AppendAllocatedOp(std::move(ptr));
559
  }
Q
Qiao Longfei 已提交
560 561 562 563 564 565
  // Create Variable

  // Create target gradient variable
  std::unordered_map<std::string, GradVarInfo> retv;

  auto var = root_block->Var(fill_one_op_out);
566
  var->SetDataType(target.GetDataType());
Q
Qiao Longfei 已提交
567 568 569 570 571
  var->SetShape(target.Shape());
  auto& target_grad = retv[target.Name()];
  target_grad.name_ = fill_one_op_out;
  target_grad.block_idx_ = root_block_idx;
  target_grad.op_idx_ = static_cast<int>(forward_op_num);
572 573

  // create grad_var for all blocks in this program
574
  CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
575 576
  for (size_t block_index = forward_block_num;
       block_index < program_desc.Size(); ++block_index) {
577
    CreateGradVarInBlock(0, grad_to_var, program_desc.MutableBlock(block_index),
578
                         &retv);
F
fengjiayi 已提交
579
  }
580
  return retv;
F
Update  
fengjiayi 已提交
581 582
}

Y
Yu Yang 已提交
583 584
}  // namespace framework
}  // namespace paddle